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1300Y Geometry and Topology

1 An introduction to homotopy theory

This semester, we will continue to study the topological properties of manifolds, but we will also consider
more general topological spaces. For much of what will follow, we will deal with arbitrary topological spaces,
which may, for example, not be Hausdorff (recall the quotient space R0 = R t R/(a ∼ b iff a = b 6= 0), or
locally Euclidean (for example, the Greek letter θ), or even locally contractible (for example, the Hawaiian
earring, given by the union of circles at (1/n, 0) of radius 1/n for all positive n ∈ Z in R2 with the induced
topology).

While we relax the type of space under consideration, we suitably relax the notion of equivalence which
we are interested in: we will often be concerned not with homeomorphism (topological equivalence), but
rather homotopy equivalence, which we recall now.

Definition 1. Continuous maps f0, f1 : X −→ Y are homotopic, i.e. f0 ' f1, when there is a continuous
map F : X × I −→ Y , called a homotopy, such that F (x, 0) = f0(x) and F (x, 1) = f1(x). We sometimes
write F : f0 ⇒ f1 to denote the homotopy.

The homotopy relation ' is an equivalence relation: if F01 : f0 ⇒ f1 and F12 : f1 ⇒ f2 for maps
fi : X −→ Y , then

F02(t, x) =

{
F01(2t, x) : 0 ≤ t ≤ 1/2
F12(2t− 1, x) : 1/2 ≤ t ≤ 1

gives a homotopy F02 : f0 ⇒ f2. Check reflexivity and identity yourself!
The homotopy relation is also compatible with the natural category structure on continuous functions:

If F : f0 ⇒ f1 for fi : X −→ Y , and G : g0 ⇒ g1 for gi : Y −→ Z, then the composition

X × I
(F,πI) // Y × I G // Z

defines a homotopy g0 ◦ f0 ⇒ g1 ◦ f1. As a result of this, we may consider a new category, where the objects
are topological spaces and the morphisms are homotopy classes of continuous maps.

Definition 2. Topological spaces, and homotopy classes of maps between them, form a category, HTop,
called the homotopy category of spaces.

Because the notion of morphism is different in HTop, this changes the meaning of isomorphism – we are
no longer dealing with homeomorphism.

Definition 3. Topological spaces X,Y are said to be homotopy equivalent(or homotopic or have the same
homotopy type X ' Y ) when they are isomorphic in the homotopy category. This means that there are
maps f : X −→ Y , g : Y −→ X such that f ◦ g ' IdY and g ◦ f ' IdX .

Example 1.1. (Homotopy equivalences)

• The one-point space {∗} is homotopic to R, since ∗ 7→ 0 and x 7→ ∗ ∀x ∈ R define continuous maps
f, g which are homotopy inverses of each other. Similarly {∗} ' Bn ' Rn ∀n. Any space ' ∗ we call
contractible.

• The solid torus B2 × S1 is homotopic to S1.

• Any vector bundle E −→ X is homotopic to X itself.

• The “pair of pants” surface with boundary S1 t S1 t S1 is homotopic to the letter θ.

When considering maps f : X −→ Y , we may choose to consider equivalence classes of maps which are
homotopic only away from a distinguished subset A ⊂ X. These are called homotopies relative to A.
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1.1 Cell complexes 1300Y Geometry and Topology

Definition 4. For fi : X −→ Y and A ⊂ X, we say F : f0 ⇒ f1 is a homotopy rel A when F (x, t) = f0(x)
for all x ∈ A and for all t.

This is useful in the case that a space X can be “continuously contracted” onto a subspace A ⊂ X: we
formalize this as follows:

Definition 5. A retraction of X onto the subspace A ⊂ X is a continuous map r : X −→ A such that
r|A = IdA. In other words, a retraction is a self-map r : X −→ X such that r2 = r, where we take A = im(r).

We then say that A ⊂ X is a (strong) deformation retract of X when IdX : X −→ X is homotopic (rel A)
to a retract r : X −→ A.

Proposition 1.2. If A ⊂ X is a deformation retract of X, then A ' X.

Proof. Take r : X −→ A and the inclusion ι : A −→ X. Then ι◦r = r ' IdX by assumption, and r◦ ι = IdA.
Hence we have X ' A.

Deformation retracts are quite intuitive and easy to visualize - they also can be used to understand any
homotopy equivalence:

Proposition 1.3. (See Hatcher, Cor. 0.21) X,Y are homotopy equivalent iff there exists a space Z con-
taining X,Y and deformation retracting onto each.

1.1 Cell complexes

The construction of a mapping cylinder Mf of a continuous map f : X −→ Y is an example of the coarse
type of gluing and pasting constructions we are allowed to do once we go beyond manifolds. In this section we
will introduce more such constructions, and introduce a class of spaces which is very convenient for algebraic
topology.

A cell complex, otherwise known as a CW complex, is a topological space constructed from disks (called
cells), step by step increasing in dimension. The basic procedure in the construction is called “attaching an
n-cell”. An n-cell is the interior en of a closed disk Dn of dimension n. How to attach it to a space X?
Simply glue Dn to X with a continuous map ϕ : Sn−1 −→ X, forming:

X tDn/{x ∼ ϕ(x) : x ∈ ∂Dn}.

The result is a topological space (with the quotient topology), but as a set, is the disjoint union X t en.
Building a cell complex X

• Start with a discrete set X0, whose points we view as 0-cells.

• Inductively form the n-skeleton Xn from Xn−1 by attaching a set of n-cells {enα} to Xn−1.

• Either set X = Xn for some n < ∞, or set X =
⋃
nX

n, where in the infinite case we use the weak
topology: A ⊂ X is open if it is open in Xn ∀n.

While cell complexes are not locally Euclidean, they do have very good properties, for example they are
Hausdorff and locally contractible. Any manifold is homotopy equivalent to a cell complex.

Example 1.4. The 1-skeleton of a cell complex is a graph, and may have loops.

Example 1.5. The classical representation of the orientable genus g surface as a 4g-gon with sides identified
cyclically according to . . . aba−1b−1 . . . is manifestly a cell complex with a single 0-cell, 2g 1-cells and a single
2-cell. One sees immediately from this representation that to puncture such a surface at a single point would
render it homotopy equivalent to a “wedge” of 2g circles, i.e. the disjoint union of 2g circles where 2g points,
one from each circle, are identified.
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Example 1.6. The n-sphere may be expressed as a cell complex with a single 0-cell and a single n-cell. So
Sn = e0 t en.

Example 1.7. The real projective space RPn is the quotient of Sn by the antipodal involution. Hence it
can be expressed as the upper hemisphere with boundary points antipodally identified. Hence it is a n-cell
attached to RPn−1 via the antipodal identification map. since S0 = {−1, 1}, we see RP 0 = e0 is a single
0-cell, and RPn = e0 t e1 t · · · t en.

Note that in the case of RP 2, the attaching map for the 2-cell sends opposite points of S1 to the same
point in RP 1 = S1. Hence the attaching map S1 −→ S1 is simply θ 7→ 2θ. Compare this with the attaching
map θ 7→ θ, which produces the 2-disc instead of RP 2.

Example 1.8. The complex projective space, CPn, can be expressed as Cn adjoin the n−1-plane at infinity,
where the attaching map S2n−1 −→ CPn−1 is precisely the defining projection of CPn−1, i.e. the generalized
Hopf map. As a result, as a cell complex we have

CPn = e0 t e2 t · · · t e2n.

1.2 The fundamental group(oid)

We are all familiar with the idea of connectedness of a space, and the stronger notion of path-connectedness:
that any two points x, y may be joined by a continuous path. In this section we will try to understand the
fact that there may be different homotopy classes of paths connecting x, y, or in other words1, that the space
of paths joining x, y may be disconnected.

To understand the behaviour of paths joining points in a topological space X, we first observe that these
paths actually form a category: Define a category P(X), whose objects are the points in X, and for which
the morphisms from p ∈ X to q ∈ X are the finite length paths joining them, i.e. define

Hom(p, q) := {γ : [0,∞) −→ X : ∃R > 0 with γ(0) = p, γ(t) = q ∀t ≥ R}.

We may then define the length of the path to be Tγ = Inf{T : γ(t) = q ∀ t ≥ T}.
The composition

Hom(p, q)×Hom(q, r) −→ Hom(p, r)

is known as “concatenation of paths”, which simply means that

(γ2γ1)(t) =

{
γ1(t) 0 ≤ t ≤ Tγ1
γ2(t− Tγ1) t ≥ Tγ1

The path category P(X) has a space of objects, X, and a space of arrows (morphisms), which is a subspace
of C0([0,∞), X). As a result, it is equipped with a natural topology: Take the given topology on X, and
take the topology on arrows induced by the “compact-open” topology on C0([0,∞), X). You can verify that
the category structure is compatible with this topology.

[Recall: open sets in the compact-open topology are arbitrary unions of finite intersections of sets of the
form C0((X,K), (Y,U)), for K ⊂ X compact and U ⊂ Y open.]

Just as we simplified the category Top to form HTop, we can simplify our path category P(X) by
keeping the objects, but considering two paths γ, γ′ ∈ Hom(p, q) to be equivalent when they are homotopic
rel boundary in the following sense2

Definition 6. Paths γ0, γ1 are homotopic paths (and we write γ0 ' γ1) when there is a homotopy

H : I × [0,∞) −→ X

such that H(0, t) = γ0(t) and H(1, t) = γ1(t) for all t, and there exists an R > 0 for which H(s, 0) = γi(0)
and H(s, t) = γi(1) ∀t > R, for all s.

1Consider this a heuristic statement - it is a delicate matter to compare C0(I × I,X) and C0(I, C0(I,X)).
2We showed that homotopy is an equivalence relation; for the same reason, homotopy rel A ⊂ X is, too.
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1.2 The fundamental group(oid) 1300Y Geometry and Topology

Exercise 1. If γ0, γ1 are paths [0, 1] −→ X, then they are homotopic paths if and only if there is a homotopy
rel endpoints

H : I × I −→ X

with H(0, t) = γ0(t) and H(1, t) = γ1(t) for all t. (rel endpoints means that H(s, 0) = γi(0) and H(s, 1) =
γi(1) for all s.)

Finally, note that if γpq ∈ Hom(p, q) and γqr ∈ Hom(q, r), and if we homotopically deform these paths

γpq
h⇒ γ′pq andγqr

k⇒ γ′qr, then the concatenation (and rescaling) of h and k gives a homotopy from γqrγpq
to γ′qrγ

′
pq. This shows that the category structure descends to homotopy classes of paths.

Modding out paths by homotopies, we obtain a new category, which we could call HP(X), but it is
actually called Π1(X), the fundamental groupoid of X. Note that since P(X) has a topology from compact-
open, then so does its quotient Π1(X). The reason it is called a groupoid is that it is a special kind of
category: every morphism is invertible: given any homotopy class of path [γ] : p −→ q, we can form
[γ]−1 = [γ−1], where γ−1(t) = γ(Tγ− t). Draw a diagram illustrating a homotopy from γ−1γ to the constant
path p, proving that any path class is invertible in the fundamental groupoid.

Definition 7. The fundamental groupoid Π1(X) is the category whose objects are points in X, and whose
morphisms are homotopy classes of paths3 between points. It is equipped with the quotient of the compact-
open topology.

From any groupoid, we can form a bunch of groups: pick any object x0 ∈ X in the category, and
consider the space of all self-morphisms Hom(x0, x0) in the category. Since all morphisms in a groupoid are
invertible, it follows that Hom(x0, x0) is a group – it is called the isotropy group of x0. Since the fundamental
groupoid has a natural topology for which the category structure is continuous, it follows that Hom(x0, x0)
is a topological group.

Definition 8. The fundamental group of the pointed4space (X,x0) is the topological group π1(X,x0) :=
Hom(x0, x0) of homotopy classes of paths beginning and ending at x0.

In any groupoid, the isotropy groups of objects x, y are always isomorphic if Hom(x, y) contains at least
one element γ, since the map g 7→ γgγ−1 defines an isomorphism Hom(x, x) −→ Hom(y, y) Therefore we
obtain:

Proposition 1.9. If x, y ∈ X are connected by a path σ, then γ 7→ [σ]γ[σ]−1 defines an isomorphism
π1(X,x) −→ π1(X, y).

Example 1.10. Let X be a convex set in Rn (this means that the linear segment joining p, q ∈ X is
contained in X) and pick p, q ∈ X. Given any paths γ0, γ1 ∈ P(p, q), the linear interpolation sγ0 + (1− s)γ1

defines a homotopy of paths γ0 ⇒ γ1. Hence there is a single homotopy class of paths joining p, q, and
so Π1(X) maps homeomorphically via the source and target maps (s, t) to X ×X, and the groupoid law is
(x, y) ◦ (y, z) = (x, z). This is called the pair groupoid over X. The fundamental group π1(X,x0) is simply
s−1(x0) ∩ t−1(x0) = {(x0, x0)}, the trivial group.

The final remark to make concerning the category P(X) of paths on a space X, and its homotopy
descendant Π1(X), the fundamental groupoid, is that they depend functorially on the space X.

Proposition 1.11. P : X 7→ P(X) is a functor from Top to the category of categories, taking morphisms
(continuous maps) f : X −→ Y to morphisms (functors) f ◦− : P(X) −→ P(Y ). Furthermore, a homotopy
H : f ⇒ g defines a natural transformation P(f) ⇒ P(g), and hence a homotopy equivalence X ' Y gives
rise to an equivalence of categories P(X) ' P(Y ).

3Note also that any path γ̃ may be reparamatrized via γ(t) := γ̃(Tγt) to a path of unit length, and that γ′ ' γ, so that up to
homotopy, only unit length paths need be considered (this is the usual convention when defining the fundamental group(oid)).

4A pointed space is just a pair (X,A ⊂ X) where A happens to consist of a single point. Recall that pairs form a category,
with Hom((X,A), (Y,B)) = {f ∈ C0(X,Y ) : f(A) ⊂ B}.
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1.3 π1(S1) = Z 1300Y Geometry and Topology

These properties descend to the fundamental groupoid, as well as to the fundamental group, implying
that for any continuous map of pointed spaces f : (X,x0) −→ (Y, y0), we obtain a homomorphism of groups
f∗ : π1(X,x0) −→ π1(Y, y0), given simply by composition [γ] 7→ [f ◦ γ]. This last fact is usually proven
directly, since it is so simple.

1.3 π1(S
1) = Z

In this section we will compute the fundamental group of S1. The method we use will help us develop the
theory of covering spaces. We essentially follow Hatcher, Chapter 1.

Theorem 1.12. The map Φ : Z −→ π1(S1, 1) given by n 7→ [ωn], for ωn(s) = e2πins, is an isomorphism.

Proof. Consider the map p : R −→ S1 defined by p(s) = e2πis. It can be viewed as a projection of a single
helix down to a circle. The loop ωn may be factored as a linear path ω̃n(s) = ns in R, composed with p:

R
p

��
[0, 1]

ωn
//

ω̃n

<<zzzzzzzz
S1

We say that ω̃n is a “lift” of ωn to the “covering space” R. Note that Φ(n) could be defined as [p ◦ f̃ ] for
any path f̃ in R joining 0 to n. This is because f̃ ' ω̃n via the homotopy (1− t)f̃ + tω̃n.

To check that Φ is a homomorphism, note that Φ(m+ n) is represented by the loop p ◦ (ω̃m · (τm ◦ ω̃n)),
where τm : R −→ R is the translation τm(x) = x + m. But since5 p ◦ τm = p, we see that the loop is equal
to the concatenation ωm · ωn. Thus Φ(m+ n) = Φ(m)Φ(n).

To prove that Φ is surjective, we do it by taking any loop f : I −→ S1 and lifting it to f̃ starting at 0,
which then must go to an integer n. Then Φ(n) = [f ] as required. For this to work, we need to prove:

a) For each path f : I −→ S1 with f(0) = x0 and each x̃0 ∈ p−1(x0),
there is a unique lift f̃ : I −→ R with f(0) = x̃0.

To prove that Φ is injective, suppose that Φ(m) = Φ(n). This means that there is a homotopy ft : ωm =
f0 ⇒ ωn = f1. Let us lift this homotopy to a homotopy f̃t of paths starting at 0. By uniqueness it must be
that f̃0 = ω̃0 and similarly f̃1 = ω̃1. Since f̃t is a homotopy of paths, its endpoint is the same for all t, hence
m = n. For this to work, we need to be able to lift the homotopy via the statement:

b) For each homotopy ft : I −→ S1 of paths starting at x0 ∈ S1,
and each x̃0 ∈ p−1(x0), there is a unique lifted homotopy f̃t :
I −→ R of paths starting at x̃0.

Both statements a), b) are lifting results and can be absorbed in the statement of the following lemma.

Lemma 1.13 (Lifting lemma). Given a map F : Y × I −→ S1 and a “initial lift” F̃0 : Y ×{0} −→ R lifting
F |Y×{0}, there is a unique “complete lift” F̃ : Y × I −→ R lifting F and agreeing with F̃0.

Proof. The main ingredient of the proof is to use the fact that p : R −→ S1 is a covering space, meaning
that there is an open cover {Uα} of S1 such that p−1(Uα) is a disjoint union of open sets, each mapped
homeomorphically onto Uα by p. For example, we could take the usual cover U0, U1 by two open arcs.

To construct the lift F̃ , we first lift the homotopy for small neighbourhoods N ⊂ Y , producing F̃ :
N × I −→ R. We then observe that these lifts on neighbourhoods glue together to give a complete lift.

Fix y0 ∈ Y . By compactness of y0 × I, there is a neighbourhood N of y0 and a partition 0 = t0 < t1 <
· · · < tm = 1 of the interval such that F (N × [ti, ti+1]) is contained in some Uα for each i (call this open

5We see here that τm is a “deck transformation”, an automorphism of the covering space fixing the base.
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set Ui). The lift on N × [0, t0] is given as F̃ |N×{0}. Assume inductively that F̃ has been constructed on
N× [0, ti]. For the next segment, F (N× [ti, ti+1]) ⊂ Ui and F̃ (y0, ti) lies inside Ũi. Replacing N by a smaller
neighbourhood of y0, we may assume that F̃ (N × {ti}) ⊂ Ũi. Now we simply define F̃ on N × [ti, ti+1] to
be p|−1

Ũi
◦ F . In this way we get a lift F̃ : N × I −→ R for some neighbourhood N of y0.

The fact that these local lifts glue to a global lift stems from the uniqueness of the lift at each point y0

(hence two local lifts for neighbourhoods N,N ′ must agree on their intersection. Furthermore, the uniqueness
of the complete lift is also implied by the uniqueness of the lift at each point y0, which we now show.

Let Y be a point. Suppose F̃ , F̃ ′ are two lifts of F : I −→ S1 with F̃ (0) = F̃ ′(0). Choose a partition
0 = t0 < t1 < · · · < tm = 1 compatible with {Ui} as before. Assume that F̃ = F̃ ′ on [0, ti]. Since [ti, ti+1] is
connected, F̃ ([ti, ti+1]) is also, and must lie in a single one of the lifts Ũi of Ui, in fact the same one which
F̃ ′([ti, ti+1]) is in, since these share the same value at ti. Since p is an isomorphism on this open set, we
obtain F̃ = F̃ ′ on [ti, ti+1], completing the proof.

Corollary 1.14. Any nonconstant complex polynomial f(z) must have a zero.

Proof. If f has no zeros, then f must take C\{0} into C\{0}, both homotopic to S1. For sufficiently small R,
the loop γR(t) = f(Re2πit) is homotopic to a constant loop ω0. Letting R grow sufficiently large, f(z) behaves
as zn for n the degree of f , and so γR(t) is homotopic to ωn. By the theorem, n = 0, a contradiction.

Using the same arguments you can show that f must have n = deg f zeros, counted with multiplicity.

Corollary 1.15 (Brouwer fixed point theorem). Every continuous map h : D2 −→ D2 has a fixed point.

Proof. If h has no fixed point, then we obtain a map r : D2 −→ S1 by intersecting the ray from h(x) to
x with the boundary circle. This is a retraction onto the circle. But a retract r : X −→ A to a subspace
A

i
↪→ X satisfiees r ◦ i = Id, implying r∗ ◦ i∗ = Id, implying that i∗ must be an injection. Contradiction.

Corollary 1.16 (Borsuk-Ulam). Every continuous map f : S2 −→ R2 takes the same value on at least one
pair of antipodal points.

Proof. If not, then g̃(x) = f(x)−f(−x) is an odd function S2 −→ R2 with no zeros, so that g(x) = g̃(x)/|g̃(x)|
is well defined and still odd. Composing with the equatorial path η(s) = (cos 2πs, sin 2πs, 0), we obtain an
odd function h : S1 −→ S1. We prove that h is nontrivial in π1(S1): lift h to h̃ : S1 −→ R; since
h(s+ 1/2) = −h(s) for s ∈ [0, 1/2], it follows that h̃(s+ 1/2) = h̃(s) + q/2 for some odd integer q (q must be
constant since it depends continuously on s but is an integer). In particular h̃(1) = h̃(1/2) + q/2 = h̃(0) + q.
In other words, h is homotopic to an odd multiple of the generator of π1(S1) and hence must be nontrivial.
On the other hand, since η is nullhomotopic in S2, h = g◦η must also be nullhomotopic, a contradiction.

Borsuk-Ulam can be used to prove the famous “Ham Sandwich theorem”, stating that bread, ham, and
cheese, can always be cut with one slice in such a way so that all three quantities are halved. This is proved
by starting with the bread: for each direction v ∈ S2, let P (v) be the plane normal to v which cuts the
bread in half (the middle such plane if there is an interval of these). Then define a map S2 −→ R2 via
f(v) = (c(v), h(v)), where c(v) is the volume of cheese on the side of P (v) in the direction of v, and similarly
for the ham h(v). Borsuk-Ulam then implies that there is a plane which ensures a well-balanced meal.

Before we discuss the computation of π1(X) for other, more complicated examples, let’s try to understand
the fundamental groupoid of S1.

As we saw before, any paths γ, γ′ ∈ P(R) joining p, q ∈ R must be homotopic, i.e. there is a single
homotopy class of paths joining points in R, and so the fundamental groupoid of R is simply R × R, with
groupoid law (x, y) ◦ (y, z) = (x, z).

Now let a, b ∈ S1 and let γ be a path from a to b. Choose ã ∈ p−1(a), so that γ may be lifted to γ̃, starting
at ã and ending at b̃ := γ̃(1). Of course γ̃ is homotopic to a unique linear path, and similarly for γ; and two
such linear paths p◦γ̃, p◦γ̃′ coincide iff γ′ = γ+n, n ∈ Z. As a result, we see that Π1(S1) = R×R/ ∼, where
(x, y) ∼ (x+n, y+n), n ∈ Z. Therefore we obtain that Π1(S1) has a cylinder as its space of arrows, which
then maps to S1 via the source and target maps (s, t). Note also that for p ∈ S1, s−1(p) is homeomorphic
to R, and t maps this to S1 as a covering map, precisely the same one as p : R −→ S1 from earlier.

7
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1.4 Further computations of π1

The main technique for computing π1(X) is the Van Kampen theorem, which is an analog of the Mayer-
Vietoris sequence which we learned about for de Rham cohomology. Before we get to it, we will cover some
more elementary facts about computing π1.

Proposition 1.17. Let X,Y be path-connected. Then π1(X × Y ) is isomorphic to π1(X)× π1(Y ).

Proof. Recall that a map f : Z −→ X × Y is continuous iff the projections g : Z −→ X, h : Z −→ Y are
separately continuous. Therefore if f is a loop based at (x0, y0), it is nothing more than a pair of loops in
X and Y based at x0 and y0. Similarly homotopies of loops are nothing but pairs of homotopies of pairs of
loops, and so [f ] 7→ ([g], [h]) defines the obvious isomorphism.

A natural example to consider, given that π1(S1) ∼= Z, is the torus T = S1 × S1. Then π1(T ) ∼= Z× Z.

Proposition 1.18. π1(Sn) = {0} for n > 2.

Proof. Any continuous map of smooth manifolds is homotopic to a smooth map: given f : S1 −→ Sn, we
may find a smooth approximation f̃ : S1 −→ Rn+1 which lies in a small tubular neighbourhood U of Sn.
Then form H(p, t) = r((1− t)f(p) + tf̃(p)), for r : U −→ Sn the retraction.

By Sard’s theorem, f̃ is not surjective for n ≥ 2, failing to take q ∈ Sn as a value. Sn\{q} is contractible,
hence f̃ is homotopic to the trivial path.

Corollary 1.19. R2 is not homeomorphic to Rn for n 6= 2.

8
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1.5 The Van Kampen theorem

There are many versions of the Van Kampen theorem; all of them help us to do the following: determine
the fundamental group of a space X which has been expressed as a union

⋃
α Uα of open sets, given the

fundamental groups of each Uα and Uα ∩ Uβ , as well as the induced maps on fundamental groups given by
the inclusion (or fibered coproduct) diagram

Uα ∩ Uβ
iαβ //

iβα

��

Uα

iα

��
Uβ

iβ
// Uα ∪ Uβ

(1)

Before we begin to state the theorem, we briefly review the idea of the free product of groups. Given
groups G1, G2, we may form the free product G1 ∗G2, defined as follows: G1 ∗G2 is the group of equivalence
classes of finite words made from letters chosen from G1 t G2, where the equivalence relation is finitely
generated by a ∗ b ∼ ab for a, b both in G1 or G2, and the identity elements ei ∈ Gi are equivalent to the
empty word. The group operation is juxtaposition. For example, Z ∗ Z is the free group on two generators:

Z ∗ Z = 〈a, b〉 = {ai1bj1ai2bj2 · · · aikbjk : ip, jp ∈ Z, k ≥ 0}

Note that from a categorical point of view6, G1 ∗G2 is the coproduct or sum of G1 and G2 in the following
sense: not only does it fit into the following diagram of groups:

G2

ι2

��
G1 ι1

// G1 ∗G2

but (ι1, ι2, G1 ∗ G2) is the “most general” such object, i.e. any other triple (j1, j2, G) replacing it in the
diagram must factor through it, via a unique map G1 ∗G2 −→ G.

The simplest version of Van Kampen is for a union X = U1 ∪ U2 of two path-connected open sets
such that U1 ∩ U2 is path-connected and simply connected. Note that the injections ι1, ι2 give us induced
homomorphisms π1(Ui) −→ π1(X). By the coproduct property, this map must factor through a group
homomorphism

Φ : π1(U1) ∗ π1(U2) −→ π1(X).

Theorem 1.20 (Van Kampen, version 1). If X = U1 ∪ U2 with Ui open and path-connected, and U1 ∩ U2

path-connected and simply connected, then the induced homomorphism Φ : π1(U1) ∗ π1(U2) −→ π1(X) is an
isomorphism.

Proof. Choose a basepoint x0 ∈ U1 ∩ U2. Use [γ]U to denote the class of γ in π1(U, x0). Use ∗ as the free
group multiplication.

Φ is surjective: Let [γ] ∈ π1(X,x0). Then we can find a subdivision 0 = t0 < t1 < · · · < tn = 1 such
that γ([ti, ti+1]) is contained completely in U1 or U2 (it might be in U1 ∩ U2). Then γ factors as a product
of its restrictions γi+1 to [ti, ti+1], i.e.

[γ]X = [γ1γ2 · · · γn]X

But the γi are not loops, just paths. To make them into loops we must join the subdivision points γ(ti) to
the basepoint, and we do this as follows: if γ(ti) ∈ U1 ∩ U2 then we choose a path ηi from x0 to γ(ti) lying
in U1 ∩U2; otherwise we choose such a path lying in whichever of U1, U2 contains γ(ti). This is why we need
Ui, U1 ∩ U2 to be path-connected.

6Coproducts in categories are the subject of a question in Assignment 6
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Then define γ̃i = ηi−1γiη
−1
i and we obtain a factorization of loops

[γ]X = [γ̃1]X · · · [γ̃n]X .

We chose the ηi in just such a way that each loop in the right hand side lies either in U1 or in U2; hence we
can choose ei ∈ {1, 2} so that [γ̃1]Ue1 ∗ · · · ∗ [γ̃n]Uen makes sense as a word in π1(U1) ∗ π1(U2), and hence we
have [γ]X = Φ([γ̃1]Ue1 ∗ · · · ∗ [γ̃n]Uen ), showing surjectivity.

Φ is injective: take an arbitrary element of the free product γ = [a1]Ue1 ∗ · · · ∗ [ak]Uek (for ei ∈ {1, 2}) ,
and suppose that Φ([a1]Ue1 ∗ · · · ∗ [ak]Uek ) = 1. This means that a1 · · · ak is homotopically trivial in X. We
wish to show that γ = 1 in the free product group.

Take the homotopy H : I × I −→ X taking a1 · · · ak to the constant path at x0, and subdivide I × I
into small squares Sij = [si, si+1]× [ti, ti+1] so that each square is sent either into U1 or U2, and subdivide
smaller if necessary to ensure that the endpoints of the domains of the loops ai are part of the subdivision.

Set up the notation as follows: let vij be the grid point (si, ti) and aij the path defined by H on the
horizontal edge vij → vi+1,j , and bij the vertical path given by H on vij → vi,j+1. Then we can write
ai = api−1+1,0 · · · api,0 for some {pi}, and we can factor each loop as a product of tiny paths:

γ = [a1]Ue1 ∗ · · · ∗ [ak]Uek = [a0,0 · · · ap1,0]Ue1 ∗ · · · ∗ [· · · apk,0]Uek

Again, these paths aij (as well as the bij) are not loops, so, just as in the proof of surjectivity, choose
paths hij from the basepoint to all the gridpoint images H(vij), staying within U1∩U2, U1, or U2 accordingly
as H(vij). pre- and post-composing with the hij , we then obtain loops ãij and b̃ij lying in either U1 or U2.

In particular we can factor γ as a bunch of tiny loops, each remaining in U1 or U2:

γ = [ã0,0]Ue1 ∗ · · · ∗ [ãp1,0]Ue1 ∗ · · · ∗ [ãpk,0]Uek

For each loop ãi,0, we may use H restricted to the square immediately above ai,0 to define a homotopy
Hi,0 : ãi,0 ⇒ b̃i,0ãi,1b̃

−1
i+1,0: If ãi,0 is in U1, say, and the homotopy Hi,0 occurs in U1, then we may replace

[ãi,0]U1 with [b̃i,0]U1 ∗ [ãi,1]U1 ∗ [b̃i+1,0]−1
U1

in the free product. If on the other hand Hi,0 occurs in U2, then we
observe that ãi,0 must lie in U1∩U2, and since this is simply connected, [ã1,0]U1 = empty word = [ã1,0]U2

in the free product, so it can be replaced with [b̃i,0]U2 ∗ [ãi,1]U2 ∗ [b̃i+1,0]−1
U2

in the free product. Doing this
replacement for each square in the bottom row, the [b̃i,0]Uei cancel, and we may repeat the replacement for
the next row.

In this way we eventually reach the top row, which corresponds to a free product of constant paths at
x0, showing γ = 1 in the free product, as required.

Let’s give some examples of fundamental groups computed with the simple version of Van Kampen:

Example 1.21. The wedge sum of pointed spaces (X,x), (Y, y) is X∨Y := XtY/x ∼ y, and is the coproduct
in the category of pointed spaces. If X,Y are topological manifolds, then let Vx, Vy be disc neighbourhoods
of x, y so that X ∨ Y = U1 ∪ U2 with U1 = [X t Vy] and U2 = [Vx t Y ]. We conclude that π1(X ∨ Y ) =
π1(X) ∗ π1(Y ). For example, π1(S1 ∨ S1) = Z ∗ Z = F2.

At least for pointed manifolds, therefore, we can say that the π1 functor preserves coproducts. Does
this hold for all pointed spaces? No, but it does work when the point is a deformation retract of an open
neighbourhood.

Example 1.22. Let X,Y be connected manifolds of dimension n. Then their connected sum X]Y is naturally
decomposed into two open sets U ∪ V with U ∩ V ∼= I × Sn−1 ' Sn−1. If n > 2 then π1(Sn−1) = 0, and
hence π1(X]Y ) = π1(X) ∗ π1(Y ).

Example 1.23. Using the classical 4g-gon representation of the genus g orientable surface Σg, we showed
that when punctured it is homotopic to ∨2gS

1. Hence π1(Σg\{p}) = F2g. What happens with non-orientable
surfaces? What about puncturing manifolds of dimension > 2?

10
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The second version of Van Kampen will deal with cases where U1 ∩ U2 is not simply-connected. By the
inclusion diagram (1), we see that we have a canonical map from the fibered sum π1(U1) ∗π1(U1∩U2) π1(U2)
to π1(X): Van Kampen again states that this is an isomorphism. Recall that if ιk : H −→ Gk, k = 1, 2 are
injections of groups, then the fibered product or “free product with amalgamation” may be constructed as
a quotient of the free product, by additional relations generated by (g1ι1(h)) ∗ g2 ∼ g1 ∗ (ι2(h)g2) for gi ∈ Gi
and h ∈ H. In other words,

G1 ∗H G2 = (G1 ∗G2)/K,

where K is the normal subgroup generated by elements {ι1(h)−1ι2(h) : h ∈ H}.

Theorem 1.24 (Van Kampen, version 27). If X = U1 ∪ U2 with Ui open and path-connected, and U1 ∩ U2

path-connected, then the induced homomorphism Φ : π1(U1) ∗π1(U1∩U2) π1(U2) −→ π1(X) is an isomorphism.

Proof. Exercise! Slight modification of the given proof, need to understand the analogous condition to the
one we used to show [ã]U1 = empty word = [ã]U2 in the free product.

Example 1.25. Express the 2-sphere as a union of two discs with intersection homotopic to S1. By Van
Kampen version 2, we have π1(S2) = (0 ∗ 0)/K = 0.

Example 1.26. Take a genus g orientable surface Σg. Choose a point p ∈ Σg and let U0 = Σg\{p}. Let Up
be a disc neighbourhood of p. Then we have Σg = U0 ∪ Up, with intersection U0 ∩ Up ' S1. The inclusion
map S1 −→ Up is trivial in homotopy while S1 −→ U0 sends 1 ∈ Z to a1b1a

−1
1 b−1 · · · agbga−1

g b−1
g . Hence the

amalgamation introduces a single relation:

π1(Σg) = 〈a1, b1, . . . ag, bg | [a1, b1] · · · [ag, bg]〉

Example 1.27. Do the same as above, but with RP 2 = U0 ∪ Up, with π1(U0) = Z = 〈a〉 and the inclusion
of U0 ∩ Up ' S1 in U0 sends 1 7→ a2, hence we obtain

π1(RP 2) = Z/2Z.

Example 1.28 (Perverse computation of π1(S3)). Express S3 as the union of two solid tori, glued along
their boundary. Visualize it by simply looking at the interior and exterior of an embedded torus in R3 t∞.
Fatten the tori to open sets U0, U1 with U0 ∩ U1 ' T 2, so that

π1(S3) = Z ∗Z×Z Z.

The notation is not enough to determine the group: we need the maps (ιi)∗ : Z × Z −→ Z induced by the
inclusions: by looking at generating loops, we get ι0(1, 0) = 1, ι0(0, 1) = 0 while ι1(1, 0) = 0, ι1(0, 1) = 1.
Hence the amalgamation kills both generators, yielding the trivial group.

The proof of Van Kampen in Hatcher is slightly more general than this, as it allows arbitrarily many
open sets Uα, with only the extra hypothesis that triple intersections be path-connected (in our proof, each
vertex vij is joined to the basepoint by a path: since the vertex is surrounded by 4 squares, we would need
quadruple intersections to be path-connected. This can be improved by using a hexagonal decomposition,
or a brick configuration, where the vertices are surrounded by only 3 2-cells). The ultimate Van Kampen
theorem does not refer to basepoints or put connectivity conditions on the intersection: it states that the
fundamental groupoid of U1 ∪ U2 is the fibered sum of Π1(U1) and Π1(U2) over Π1(U1 ∩ U2). Viewing
the topology of X as a category (where objects are open sets and arrows are inclusions), the Van Kampen
theorem can be rephrased as follows:

Theorem 1.29 (Van Kampen, version 3). Π1 is a functor from the topology of X to groupoids, which
preserves fibered sum8.

7See the proof in Hatcher
8See “Topology and Groupoids” by Ronald Brown.
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1.6 Covering spaces

Consider the fundamental group π1(X,x0) of a pointed space. It is natural to expect that the group theory of
π1(X,x0) might be understood geometrically. For example, subgroups may correspond to images of induced
maps ι∗π1(Y, y0) −→ π1(X,x0) from continuous maps of pointed spaces (Y, y0) −→ (X,x0). For this induced
map to be an injection we would need to be able to lift homotopies in X to homotopies in Y . Rather than
consider a huge category of possible spaces mapping to X, we restrict ourselves to a category of covering
spaces, and we show that under some mild conditions on X, this category completely encodes the group
theory of the fundamental group.

Definition 9. A covering map of topological spaces p : X̃ −→ X is a continuous map such that there
exists an open cover X =

⋃
α Uα such that p−1(Uα) is a disjoint union of open sets (called sheets), each

homeomorphic via p with Uα. We then refer to (X̃, p) (or simply X̃, abusing notation) as a covering space
of X.

Let (X̃i, pi), i = 1, 2 be covering spaces of X. A morphism of covering spaces is a covering map
φ : X̃1 −→ X̃2 such that the diagram commutes:

X̃1

φ //

p1
  A

AA
AA

AA
X̃2

p2
~~}}

}}
}}

}

X

We will be considering covering maps of pointed spaces p : (X̃, x̃0) −→ (X,x0), and pointed morphisms
between them, which are defined in the obvious fashion.

Example 1.30. The covering space p : R −→ S1 has the additional property that X̃ = R is simply connected.
There are other covering spaces pn : S1 −→ S1 given by z 7→ zn for n ∈ Z, and in fact these are the only
connected ones up to isomorphism of covering spaces (there are disconnected ones, but they are unions of
connected covering spaces).

Notice that (pn)∗ : π1(S1) −→ π1(S1) maps [ω1] 7→ [ωn] = n[ω1], hence (pn)∗(π1(S1)) ∼= Z/nZ ⊂ Z. As
a result, we see that there is an isomorphism class of covering space associated to every subgroup of Z: we
associate p : R −→ S1 to the trivial subgroup.

Note also that we have the commutative diagram

S1 zm //

zmn   A
AA

AA
AA

A S̃1

zn~~}}
}}

}}
}}

S1

showing that we have a morphism of covering spaces corresponding to the inclusion of groups mnZ ⊂ nZ ⊂ Z.

There is a natural functor from pointed covering spaces of (X,x0) to subgroups of π1(X,x0), as a
consequence of the following result:

Lemma 1.31 (Homotopy lifting). Let p : X̃ −→ X be a covering and suppose that f̃0 : Y −→ X̃ is a lifting
of the map f0 : Y −→ X. Then any homotopy ft of f0 lifts uniquely to a homotopy f̃t of f̃0.

Proof. The same proof used for the Lemma 1.13 works in this case.

Corollary 1.32. The map p∗ : π1(X̃, x̃0) −→ π1(X,x0) induced by a covering space is injective, and its
image G(p, x̃0) consists of loops at x0 whose lifts to X̃ at x̃0 are loops.

If we choose a different basepoint x̃′0 ∈ p−1(x0), and if X̃ is path-connected, we see that G(p, x̃′0) is the
conjugate subgroup γG(p, x̃0)γ−1, for γ = p∗[γ̃] for γ̃ : x̃0 → x̃′0.

12
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Hence p∗ defines a functor as follows:

{ pointed coverings (X̃, x̃0)
p // (X,x0) } −→ { subgroups G ⊂ π1(X,x0)}

The group G(p, x̃0) = p∗(π1(X̃, x̃0)) ⊂ π1(X,x0) is called the characteristic subgroup of the covering p.
We will prove that under some conditions on X, this is an equivalence:

Theorem 1.33 (injective). Let X be path-connected and locally path-connected. Then G(p, x̃) = G(p′, x̃′)
iff there exists a canonical isomorphism (p, x̃) ∼= (p′, x̃′).

Theorem 1.34 (surjective). Let X be path-connected, locally path-connected, and semilocally simply-connected.
Then for any subgroup G ⊂ π1(X,x), there exists a covering space p : (X̃, x̃) −→ (X,x) with G = G(p, x̃).

The first tool is a criterion which decides whether maps to X may be lifted to X̃:

Lemma 1.35 (Lifting criterion). Let p : (X̃, x̃0) −→ (X,x0) is a covering and let f : (Y, y0) −→ (X,x0)
be a a map with Y path-connected and locally path-connected. Then f lifts to f̃ : (Y, y0) −→ (X̃, x̃0) iff
f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x0)).

Proof. It is clear that the group inclusion must hold if f lifts, since f∗ = p∗f̃∗. For the converse, we define
f̃ as follows: let y ∈ Y and let γ : y0 → y be a path. Then take the path fγ and lift it at x̃0, giving f̃γ.
Define f̃(y) = f̃γ(1).

f̃ is well defined, independent of γ: if we choose γ′ : y0 → y, then (fγ′)(fγ)−1 is a loop h0 in the image
of f∗ and hence is homotopic (via ht) to a loop h1 which lifts to a loop h̃1 at x̃0. But the homotopy lifts,
and hence h̃0 is a loop as well. By uniqueness of lifted paths, h̃0 consists of f̃γ′ and f̃γ (both lifted at x̃0),
traversed as a loop. Since they form a loop, it must be that f̃γ′(1) = f̃γ(1).

f̃ is continuous: We show that each y ∈ Y has a neighbourhood V small enough that f̃ |V coincides
with f . Take a neighbourhood U of f(y) which lifts to f̃(y) ∈ Ũ ⊂ X̃ via p : Ũ −→ U . Then choose a
path-connected neighbourhood V of y with f(V ) ⊂ U . Fix a path γ from y0 to y and then for any point
y′ ∈ V choose path η : y → y′. Then the paths (fγ)(fη) have lifts f̃γf̃η, and f̃η = p−1fη. Hence f̃(V ) ⊂ Ũ
and f̃ |V = p−1f , hence continuous.

Lemma 1.36 (uniqueness of lifts). If f̃1, f̃2 are lifts of a map f : Y −→ X to a covering p : X̃ −→ X , and
if they agree at one point of Y , then f̃1 = f̃2.

Proof. The set of points in Y where f̃1 and f̃2 agree is open and closed: take a neighbourhood U of f(y)
such that p−1(U) is a disjoint union of homeomorphic Ũα, and let Ũ1, Ũ2 contain f̃1(y), f̃2(y). Then take
N = f̃−1

1 (Ũ1) ∩ f̃−1
2 (Ũ2). If f̃1, f̃2 agree (disagree) at y, then they must agree (disagree) on all of N .

Proof of injectivity. If there is an isomorphism f : (X̃1, x̃1) −→ (X̃2, x̃2), then taking induced maps, we get
G(p1, x̃1) = G(p2, x̃2).

Conversely, suppose G(p1, x̃1) = G(p2, x̃2). By the lifting criterion, we can lift p1 : X̃1 −→ X to a
map p̃1 : (X̃1, x̃1) −→ (X̃2, x̃2) with p2p̃1 = p1. In the other direction we obtain p̃2 with p1p̃2 = p2. The
composition p̃1p̃2 is then a lift of p2 which agrees with the Identity lift at the basepoint, hence it must be
the identity. similarly for p̃2p̃1.

Finally, to show that there is a covering space corresponding to each subgroup G ⊂ π1(X,x0), we give a
construction. The first step is to construct a simply-connected covering space, corresponding to the trivial
subgroup. Note that for such a covering to exist, X must have the property of being semi-locally simply
connected, i.e. each point x must have a neighbourhood U such that the inclusion ι∗ : π1(U, x) −→ π1(X,x)
is trivial. In fact this property is equivalent to the requirement that π1(X,x) be discrete as a topological
group. We prove the existence of a simply-connected covering space when X is path-connected, locally
path-connected, and semi-locally simply connected.

13
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Existence of simply-connected covering. Let X be as above, with basepoint x0. Define

X̃ = {[γ] | γ is a path in X starting at x0}

and let x̃0 be the trivial path at x0. Define also the map p : X̃ −→ X by p([γ]) = γ(1). p is surjective, since
X is path-connected.

We need to define a topology on X̃, show that p is a covering map, and that it is simply-connected.
Topology: Since X is locally path-connected and semilocally simply-connected, it follows that the collec-

tion U of path-connected open sets U ⊂ X with π1(U) −→ π1(X) trivial forms a basis for the topology of
X. We now lift this collection to a basis for a topology on X̃: Given U ∈ U and [γ] ∈ p−1(U), define

U[γ] = {[γη] | η is a path in U starting at γ(1)}

Note that p : U[γ] −→ U is surjective since U path-connected and injective since π1(U) −→ π1(X) trivial.
Using the fact that [γ′] ∈ U[γ] ⇒ U[γ] = U[γ′], we obtain that the sets U[γ] form a basis for a topology on
X̃. With respect to this topology, p : U[γ] −→ U gives a homeomorphism, since it gives a bijection between
subsets V[γ′] ⊂ U[γ] and the sets V ∈ U contained in U (p(V[γ′]) = V and also p−1(V ) ∩ U[γ] = V[γ′] for any
[γ′] ∈ U[γ] with endpoint in V ).

Hence p : X̃ −→ X is continuous, and it is a covering map, since for fixed U ∈ U , the sets {U[γ]} partition
p−1(U).

To see that X̃ is simply-connected: Note that for any point [γ] ∈ X̃, we can shrink the path to give a
homotopy t 7→ [γt] to the constant path [x0] (this shows X̃ is path-connected). If [γ] ∈ π1(X,x0) is in the
image of p∗, it means that the lift [γt] is a loop, meaning that [γ1] = [x0]. But γ1 = γ, this means that
[γ] = [x0], hence the image of p∗ is trivial. By injectivity of p∗, we get that X̃ is simply-connected.

14
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Under assumptions on X (connected, local simple-connected, and semi-locally simply connected, in order
to define the topology of X̃) we constructed a universal covering (X̃, p), by setting

X̃ = {[γ] : γ is a path in X starting at x0}.

We also saw that this space has trivial fundamental group, as follows: Any path γ in X may be lifted to X̃
by defining γ̃(t) to be the path γ up to time t (and constant afterwards). If [γ] is in the image of p∗, this
means that there is a loop in this class, say γ, which lifts to a loop γ̃ in X̃. But this means that γ up to
time 1 is equal in X̃ (i.e. homotopic to) to γ up to time 0, i.e. [γ] = 0 in π1(X). Since p∗ is injective, it
must be that π1(X̃) = 0.

Having the universal cover, we can produce all other coverings via quotients of it, as follows:

surjectivity of functor. Suppose now that (X,x0) has a (path-connected) universal covering space (X̃, x̃0),
and suppose a subgroup H ⊂ π1(X,x0) is specified. Then we define an equivalence relation on X̃ as follows:
given points [γ], [γ′] ∈ X̃, we define [γ] ∼ [γ′] iff γ(1) = γ′(1) and [γ′γ−1] ∈ H. Because H is a subgroup,
this is an equivalence relation. Now set XH = X̃/ ∼. Note that this equivalence relation holds for nearby
paths in the sense [γ] ∼ [γ′] iff [γη] ∼ [γ′η]. Therefore, if any two points in U[γ], U[γ′] are equivalent, then so
is every other point in the neighbourhood. This shows that the projection p : XH −→ X via [γ] 7→ γ(1) is a
covering map.

As a basepoint in XH , pick [x0], the constant path at x0. Then the image of p∗ isH, since the lift of the
loop γ is a path beginning at [x0] and ending at [γ], and this is a loop exactly when [γ] ∼ [x0], i.e. [γ] ∈ H.

Example 1.37 (Diagram: page 58). Consider the wedge S1 ∨ S1. Recall that π1(S1 ∨ S1) = F2 =< a, b >.
View it as a graph with one vertex and two edges, labeled by a, b with their appropriate orientations. We
can then take any other graph X̃, labeled in this way, and such that each vertex is locally isomorphic to the
given vertex, and define a covering map to S1 ∨S1. The resulting graph X̃ is itself a wedge of k circles, with
fundamental group Fk. Hence we obtain a map Fk −→ F2 which is an injection. Examples (1), (2)

In fact, every 4-valent graph can be labeled in the way required above: if the graph is finite, take an
Eulerian circuit and label the edges a, b, a, b . . .. Then the a edges are a collection of disjoint circles: orient
them and do the same for the b edges.

An infinite 4-valent graph may be constructed which is a simply-connected covering space for S1 ∨ S1: it
is a fractal 4-branched tree (drawing).

Not only can we have a free group on any number of generators as a subgroup of F2, but also we can have
infinitely many generators (drawing of (10), (11))

Note that changing the basepoint vertex of a covering simply conjugates p∗(π1(X̃, x̃0)) inside π1(X,x0).
(draw (3), (4)). Isomorphism of coverings (without fixing basepoints) is just a graph isomorphism preserving
labeling and orientation.

Note also that characteristic subgroups may be isomorphic without being conjugate. (draw (5),(6)), these
are homeomorphic graphs, but not isomorphic as covering spaces.

Example 1.38. If X is a path-connected space with fundamental group π1(X,x0), then by attaching 2-cells
e2
α via maps ϕα : S1 −→ X, then the resulting space Y will have fundamental group which is a quotient of
π1(X,x0) by the normal subgroup N generated by loops of the form γαϕαγ

−1
α , for any γα chosen to join x0

to ϕα(1). This is seen by Van Kampen’s theorem applied to a thickened version Z of Y where the paths γα
are thickened to intervals attached to the discs eα.

We can use this construction to obtain any group as a fundamental group. Choose a presentation

G = 〈gα | rβ〉.

This is possible since any group is a quotient of a free group. Then we construct XG from ∨αS1
α by attaching

2-cells e2
β by loops specified by the words rβ. (for example, to obtain Zn = 〈a | an = 1〉, attach a single 2-cell

to S1 via the map z 7→ zn. For n = 2 we obtain RP 2.
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The Cayley complex is one way of describing the universal cover of XG. It is a cell complex X̃G constructed
as follows: The vertices are the elements of G itself. Then at each vertex g ∈ G, attach an edge joining g to
ggα for each generator gα. The resulting graph is the Cayley graph of G with respect to the generators gα.
Then, each relation rβ determines a loop starting at any g ∈ G, and we attach a 2-cell to all these loops.
There is an obvious map to XG given by quotienting by the action of G on the left, which sends all points
to the basepoint, each edge g −→ ggα to the edge S1

α, and each 2-cell associated to rβ to that attached in the
construction of XG.

For example, consider G = Z2 ∗ Z2 = 〈a, b | a2 = b2 = 1〉. then the Cayley graph has vertices
{. . . , bab, ba, b, e, a, ab, aba, . . .}, and two generators so there will be four edges coming in/out of each ver-
tex g: two outward edges corresponding to right multiplication by a, b to ga, gb, and two inward coming
from ga−1, gb−1. We therefore obtain an infinite sequence of tangent circles. We produce the Cayley com-
plex by attaching a 2-cell corresponding to a2 to the loop produced at each vertex g by following the loop
g −→ ga −→ ga2. This attaches two 2-cells to each circle, yielding a sequence of tangent 2-spheres, clearly a
simply-connected space. The action of G corresponds to an action by even translations (ab) and the antipodal
maps, giving the quotient space RP 2 ∨ RP 2.
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1.7 Group actions and Deck transformations

In many cases we obtain covering spaces X̃ −→ X from group actions; if a group A acts on X̃, the quotient
map X̃ −→ X̃/A may, under some assumptions on A and its action, be a covering.

For example, we can define the n-fold covering S1 −→ S1 as simply the quotient of S1 by the action of
Zn via x 7→ xσn for σ = e2πi/n, or even R −→ S1 via the quotient by the Z action x 7→ x+ n.

In general, if p : (X̃, x̃0) −→ (X,x0) is a universal cover, then we can obtain X as a quotient of X̃ by the
action of the fundamental group π1(X,x0) as follows:

Given an element [γ] ∈ π1(X,x0), γ lifts to a path terminating in x̃′0 over x0. Now the covering p has a
unique lift to X̃, sending x̃0 to the alternative basepoint x̃′0. This lift is a homeomorphism X̃ −→ X̃, and
this defines an action of π1(X,x0) on X̃. We’ll be careful in a moment to show the quotient is X.

In general, not all covering maps p will be the quotient by the action of a group: this will only be the
case for normal covering maps, i.e. those for which p∗(π1(X̃)) is a normal subgroup N ; Then π1(X,x0)/N
is a group, and this will act in the same way as above, with quotient X.

Example 1.39 (Coverings of surfaces). There are many interesting coverings of surfaces, which can be
constructed by acting by symmetry groups:

An example of a covering of a compact surface: take a genus mn+ 1 surface, draw it as a surface with m
genus n legs and a hole in the center. There is an obvious Zn symmetry by rotating by 2π/m. The quotient
map is then a m-fold covering map to a surface of genus n+ 1.

Consider a genus g surface in R3 with the holes along an axis, and consider the rotation about this axis
by π, giving a Z2 action with 2(g + 1) fixed points. Remove the fixed points. The punctured surface then
is a 2-sheeted cover of S2 punctured in 2(g + 1) points. This is the topological description of an equation
y2 = f(z) with f of degree 2g + 1 (this way, y2 = f has exactly two solutions except at the 2g + 1 zeros of f
and the point at infinity where f =∞. The particular case where f has degree 3 defines a genus 1 surface,
which is called an elliptic curve once a complex structure is chosen on it.

Example 1.40. The antipodal map on Sn is an action of Z2 with no fixed points; the quotient map is a
covering of RPn. This will imply that π1(RPn) = Z2. In the case n = 3, this 2:1 cover is also known as the
sequence of groups

0 // Z2 = {±1} // SU(2) π // SO(3) // 0

Note that SO(3) has several famous finite subgroups: the cyclic groups An, the dihedral groups Dn, and the
symmetry groups of the tetrahedron, octahedron, and dodecahedron, E6, E7, E8. In this way we can construct
other covering spaces, e.g. S3 −→ S3/π−1(E8), the Poincaré dodecahedral space, a homology 3-sphere.

To formalize the observations above, we wish to answer the following questions: Given a connected
covering space (without basepoint), what is its group of automorphisms (deck transformations), and when
does this group define the covering as a quotient? And, more generally, when is a group action defining a
covering map?

Definition 10. A covering map p : X̃ −→ X is called normal when, for each x ∈ X and each pair of lifts
x̃, x̃′ of x, there is an automorphism of p taking x̃ to x̃′.

Theorem 1.41. If p : X̃ −→ X is a path-connected covering (of X path-connected and locally path-
connected), with characteristic subgroup H, then the group of automorphisms of p is A = N(H)/H, and
the quotient X̃/A is the covering with characteristic subgroup N(H). Therefore, a covering is normal pre-
cisely when H is normal, and in this case the automorphism group is A = π1(X)/H and X̃/A = X.

Proof. Changing the basepoint from x̃0 ∈ p−1(x0) to x̃1 ∈ p−1(x0) corresponds to conjugating H by [γ] ∈
π1(X,x0) which lifts to a path γ̃ from x̃0 to x̃1. Therefore, [γ] ∈ N(H) iff p∗(π1(X̃, x̃0)) = p∗(π1(X̃, x̃1)),
which is the case (by the lifting of maps) iff there is a deck transformation taking x̃0 to x̃1. Therefore X̃ is
normal iff N(H) = π1(X,x0), i.e. H is already normal in π1(X,x0).

In general there is a group homomorphism ϕ : N(H) −→ A, sending [γ] to the deck transformation
mapping x̃0 7→ x̃1 as above. It is surjective by the argument above, and its kernel is precisely the classes [γ]
lifting to loops, i.e. the elements of H itself.
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Theorem 1.42. Suppose G acts on Y in a properly discontinuous way, i.e. each y ∈ Y has a neighbourhood
U such that gU are disjoint for all g ∈ G. Then the quotient of Y by G is a normal covering map, and if Y
is path-connected then G is the automorphism group of the cover.

Proof. First we remark that deck transformations of a covering space obviously have the properly discontin-
uous property.

To prove the result, take any open set U as in the definition of proper discontinuity. Then the quotient
map identifies the disjoint homeomorphic neighbourhoods {g(U) : g ∈ G} with p(U) ⊂ Y/G. By the
definition of the quotient topology, this gives a homeomorphism on each component, and hence we have a
covering.

Certainly G is a subgroup of the deck transformations, and the covering space is normal since g2g
−1
1 takes

g1(U) to g2(U), and if Y is path-connected then G equals the deck transformations, since if a deck transfor-
mation f sends y to f(y), we may simply lift the covering to the alternative point f(y) (the lifting criterion
is satisfied since the cover is normal) and this deck transformation must coincide with f by uniqueness.

Remark 1. Suppose p : X̃ −→ X is a finite covering. Fixing x0 ∈ X, we have two natural permutation
actions on the finite set p−1(x0): one is by π1(X,x0), via lifting of loops, i.e. given [γ] ∈ π1(X,x0), the
permutation σ([γ]) acts on x̃0 by σ(x̃0) = γ̃(1), where γ̃ is the lift of γ starting at x̃0. The study of this
permutation action is an alternative approach to classifying covering spaces, and this is described in Hatcher.
It is useful to understand both approaches.

The second action is by the group of deck transformations A = N(H)/H (for the characteristic subgroup
H). These actions commute. Interestingly, when X̃ is the universal cover, A is π1(X,x0) as well, and so
we have the same group acting in two ways– these actions need not coincide.
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2 Homology

We now turn to Homology, a functor which associates to a topological space X a sequence of abelian groups
Hk(X). We will investigate several important related ideas:

• Homology, relative homology, axioms for homology, Mayer-Vietoris

• Cohomology, coefficients, Poincaré Duality

• Relation to de Rham cohomology (de Rham theorem)

• Applications

The basic idea of homology is quite simple, but it is a bit difficult to come up with a proper definition. In
the definition of the homotopy group, we considered loops in X, considering loops which could be “filled in”
by a disc to be trivial.

In homology, we wish to generalize this, considering loops to be trivial if they can be “filled in” by
any surface; this then generalizes to arbitrary dimension as follows (let X be a manifold for this informal
discussion).

A k-dimensional chain is defined to be a k-dimensional submanifold S ⊂ X with boundary, equipped
with a chosen orientation σ on S. A chain is called a cycle when its boundary is empty. Then the kth

homology group is defined as the free abelian group generated by the k-cycles (where we identify (S, σ) with
−(S,−σ)), modulo those k-cycles which are boundaries of k + 1-chains. Whenever we take the boundary of
an oriented manifold, we choose the boundary orientation given by the outward pointing normal vector.

Example 2.1. Consider an oriented loop separating a genus 2 surface into two genus 1 punctured surfaces.
This loop is nontrivial in the fundamental group, but is trivial in homology, i.e. it is homologous to zero.

Example 2.2. Consider two parallel oriented loops L1, L2 on T 2. Then we see that L1 −L2 = 0, i.e. L1 is
homologous to L2.

Example 2.3. This definition of homology is not well-behaved: if we pick any embedded submanifold S in a
manifold and slightly deform it to S′ which still intersects S, then there may be no submanifold with S ∪ S′
as its boundary. We want such deformations to be homologous, so we slightly relax our requirements: we
allow the k-chains to be smooth maps ι : S −→M which needn’t be embeddings.

This definition is still problematic: it’s not clear what to do about non-smooth topological spaces, and also
the definition seems to require knowledge of all possible manifolds mapping into M . We solve both problems
by cutting S into triangles (i.e. simplices) and focusing only on maps of simplices into M .

2.1 Simplicial homology

Definition 11. An n-simplex [v0, · · · , vn] is the convex hull of n+ 1 ordered points (called vertices)in Rm
for which v1 − v0, . . . , vn − v0 are linearly independent.

The standard n-simplex is

∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑
i

ti = 1 and ti ≥ 0 ∀i},

and there is a canonical map ∆n −→ [v0, · · · , vn] via

(t0, . . . , tn) 7→
∑
i

tivi,

called barycentric coordinates on [v0, · · · , vn]. A face of [v0, · · · , vn] is defined as the simplex obtained by
deleting one of the vi, we denote it [v0, · · · , v̂i, · · · , vn]. The union of all faces is the boundary of the simplex,
and its complement is called the interior, or the open simplex.
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Definition 12. A ∆-complex decomposition of a topological space X is a collection of maps σα : ∆n −→ X
(n depending on α) such that σα is injective on the open simplex ∆n

o , every point is in the image of exactly
one σα|∆n

o
, and each restriction of σα to a face of ∆n(α) coincides with one of the maps σβ , under the

canonical identification of ∆n−1 with the face (which preserves ordering). We also require the topology to
be compatible: A ⊂ X is open iff σ−1

α (A) is open in the simplex for each α.

It is easy to see that such a structure on X actually expresses it as a cell complex.

Example 2.4. Give the standard decomposition of 2-dimensional compact manifolds.

We may now define the simplicial homology of a ∆-complex X. We basically want to mod out cycles by
boundaries, except now the chains will be made of linear combinations of the n-simplices which make up X.

Let ∆n(X) be the free abelian group with basis the open n-simplices enα = σα(∆n
o ) of X. Elements∑

α nασα ∈ ∆n(X) are called n-chains (finite sums).
Each n-simplex has a natural orientation based on its ordered vertices, and its boundary obtains a natural

orientation from the outward-pointing normal vector field. Algebraically, this induced orientation is captured
by the following formula (which captures the interior product by the outward normal vector to the ith face):

∂[v0, · · · , vn] =
∑
i

(−1)i[v0, · · · , v̂i, · · · , vn].

This allows us to define the boundary homomorphism:

Definition 13. The boundary homomorphism ∂n : ∆n(X) −→ ∆n−1(X) is determined by

∂n(σα) =
∑
i

(−1)iσα|[v0,··· ,v̂i,··· ,vn].

This definition of boundary is clearly a triangulated version of the usual boundary of manifolds, and
satisfies ∂ ◦ ∂ = ∅, i.e.

Lemma 2.5. The composition ∂n−1 ◦ ∂n = 0.

Proof.

∂∂[v0 · · · vn] =
∑
j<i

(−1)i+j [v0, · · · , v̂j , · · · v̂i, · · · , vn] +
∑
j>i

(−1)i+j−1[v0, · · · , v̂i, · · · v̂j , · · · , vn]

the two displayed terms cancel.

Now we have produced an algebraic object: a chain complex (just as we saw in the case of the de Rham
complex). Let Cn be the abelian group ∆n(X); then we get the simplicial chain complex:

· · · // Cn+1
∂n+1 // Cn

∂n // Cn−1
// · · · // C1

∂1 // C0
∂0 // 0

and the homology is defined as the simplicial homology

H∆
n (X) :=

Zn = ker ∂n
Bn = im ∂n+1

Example 2.6. The circle is a ∆-complex with one vertex and one 1-simplex. so ∆0(S1) = ∆1(S1) = Z and
∂1 = 0 since ∂e = v − v. hence H∆

0 (S1) = Z = H∆
1 (S1) and H∆

k (S1) = 0 otherwise.

Example 2.7. For T 2 and Klein bottle: ∆0 = Z, ∆1 = 〈a, b, c〉 and ∆2 = 〈P,Q〉. For RP 2, same except
∆0 = Z2.
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2.2 Singular homology

Simplicial homology, while easy to calculate (at least by computer!), is not entirely satisfactory, mostly
because it is so rigid - it is not clear, for example, that the groups do not depend on the triangulation. We
therefore relax the definition and describe singular homology.

Definition 14. A singular n-simplex in a space X is a continuous map σ : ∆n −→ X. The free abelian
group on the set of n-simplices is called Cn(X), the group of n-chains.

There is a linear boundary homomorphism ∂n : Cn(X) −→ Cn−1(X) given by

∂nσ =
∑
i

(−1)iσ|[v0,··· ,v̂i,··· ,vn],

where [v0, · · · , v̂i, · · · , vn] is canonically identified with ∆n−1. The homology of the chain complex (C•(X), ∂)
is called the singular homology of X:

Hn(X) :=
ker ∂ : Cn(X) −→ Cn−1(X)
im∂ : Cn+1(X) −→ Cn(X)

.

We would like to justify the statement that the homology is a functor. In fact we would like to show that
our assigning, to every space X, the complex of singular chains

X 7→ (C•(X), ∂)

is actually a functor from topological spaces to the category of chain complexes of abelian groups, where the
latter category has morphisms given by chain homomorphisms, just as in the case for the de Rham complex
(Ω•(M), d). By actually taking homology, we then obtain a functor to abelian groups. We would actually
like to show even more: that the functor X 7→ (C•(X), ∂) can be made into a 2-functor, sending homotopies
of continuous maps to chain homotopies: this will allow us to show that H•(X) is a homotopy invariant.

Given a singular n-simplex σ : ∆n −→ X and a map f : X −→ Y , the composition f ◦σ defines a simplex
for the space Y . In this way we define

f] : Cn(X) −→ Cn(Y ),

and we may verify that f]∂ = ∂f], implying that f] is a morphism of chain complexes, defining a functor
since (f ◦ g)] = f] ◦ g]. As a consequence, this induces a homomorphism

f∗ : Hn(X) −→ Hn(Y ).

Now we see how f] behaves for homotopic maps:

Theorem 2.8. The chain maps f], g] induced by homotopic maps f, g : X −→ Y are chain homotopic, i.e.
there exists P : Cn(X) −→ Cn+1(Y ) such that

g] − f] = P∂ + ∂P.

Hencce, f∗ = g∗, i.e. the induced maps on homology are equal for homotopic maps.

Proof. The proof is completely analogous to the same result for the de Rham complex. Given a homotopy
F : X × I −→ Y from f to g, define the Prism operators P : Cn(X) −→ Cn+1(Y ) as follows: for any n-
simplex σ : [v0, · · · , vn] −→ X, form the prism [v0, · · · , vn]×I, name the vertices vi = (vi, 0) and wi = (vi, 1),
and decompose this prism in terms of n+ 1-simplices as follows:

[v0, · · · , vn]× I =
n⋃
i=0

[v0, · · · , vi, wi, · · ·wn].
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Then we define

P (σ) =
n∑
i=0

(−1)iF ◦ (σ × Id)|[v0,··· ,vi,wi,··· ,wn] ∈ Cn+1(Y )

Now we show that ∂P = g] − f] − P∂, which expresses the fact that the boundary of the prism (left hand)
consists of the top ∆n × 1, bottom ∆n × 0, and sides ∂∆n × I of the prism.

∂P (σ) =
∑
j≤i

(−1)i(−1)jF ◦ (σ × Id)|[v0··· ,v̂j ,···vi,wi,··· ,wn]

+
∑
j≥i

(−1)i(−1)j+1F ◦ (σ × Id)|[v0··· ,vi,wi,···ŵj ,··· ,wn]

The terms with i = j in the two lines cancel except for i = j = 0 and i = j = n, giving g](σ)− f](σ). The
terms with i 6= j are −P∂(σ) by expressing it as a sum

P∂(σ) =
∑
i<j

(−1)i(−1)jF ◦ (σ × Id)|[v0··· ,vi,wi,···ŵj ,··· ,wn]

+
∑
i>j

(−1)i−1(−1)jF ◦ (σ × Id)|[v0··· ,v̂j ,··· ,vi,wi,··· ,wn]

Corollary 2.9. C• is a 2-functor and H• is homotopy invariant.
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2.3 H0 and H1

Proposition 2.10. If X has path components Xα, then Hn(X) =
⊕

αHn(Xα).

Proof. A singular simplex always has path-connected image. Hence Cn(X) is the direct sum of Cn(Xα).
The boundary maps preserve this decomposition. So Hn(X) =

⊕
αHn(Xα). (Since chains are finite sums,

we use the direct sum).

Proposition 2.11. If X is path-connected (and nonempty) then H0(X) ∼= Z.

Proof. Define ε : C0(X) −→ Z via ε(
∑
i niσi) =

∑
i ni. This is surjective if X nonempty. We must show

that ker ε = im∂1.
For any singular 1-simplex σ : ∆1 −→ X, we have ε(∂σ) = ε(σ|[v1] − σ|[v0]) = 1 − 1 = 0. Hence

im∂1 ⊂ ker ε.
For the reverse inclusion: if

∑
i ni = 0, we wish to show tha

∑
i niσi is a boundary of a singular 1-simplex.

Choose a path τi : I −→ X from a basepoint x0 to σi(v0) and let σ0 be the 0-simplex with image x0. Then
∂τi = σi − σ0, viewing τi as a singular 1-simplex. Then ∂

∑
i niτi =

∑
i niσi .

Later, we will axiomatize homology as a functor from spaces to abelian groups: there are many differ-
ent such functors, corresponding to different homology theories. To understand any homology theory it is
fundamental to compute its value on the one-point space.

Proposition 2.12. If X = {∗} then Hn(X) = 0 for n > 0 (and H0(X) = Z by the above result).

Proof. When the target is a single point, there can be only one singular n-simplex for each n, namely, the
map sending ∆n to the point ∗. Hence the chain groups are all Z, generated by σn. The boundary map
is ∂σn =

∑n
i=0(−1)iσn−1, which vanishes for n odd and is equal to σn−1 for n 6= 0 and even. Hence the

singular chain complex is

· · · // Z
∼= // Z 0 // Z

∼= // Z 0 // Z // 0

which has homology
· · · 0 0 0 0 Z 0

Note that the map ε : C0(X) −→ Z defined above may be viewed as an extension of the singular chain
complex (with C−1(X) = Z). The homology groups of this augmented chain complex are called the reduced
homology of X, and denoted H̃n(X). Clearly Hn(X) ∼= H̃n(X)⊕ Z and H̃n(X) ∼= Hn(X) for all n > 0.

Theorem 2.13 (Hurewicz isomorphism). The natural map h : π1(X,x0) −→ H1(X), given by regard-
ing loops as singular 1-cycles, is a homomorphism. If X is path-connected, h induces an isomorphism
π1(X)/[π1(X), π1(X)] −→ H1(X), i.e. H1(X) is the abelianization of the fundamental group.

In higher dimension, the Hurewicz theorem states that if the path-connected space X is n − 1 connected
for n ≥ 2 (i.e. πk(X) = 0 ∀k < n), then πn(X) is isomorphic to Hn(X).

Proof. First we describe some properties of the homology relation on paths f ∼ g ⇔ ∃τ : f − g = ∂τ , as
opposed to the homotopy of paths relation f ' g.

• if f is a constant path, then f ∼ 0 since H1(∗) = 0.

• f ' g ⇒ f ∼ g since we can write the homotopy I × I −→ X as a singular 2-chain (with two singular
2-simplices – cut the square by the diagonal) with boundary f − g + x0 − x1, and since the constant
paths x0, x1 are boundaries, so is f − g.

• f ·g ∼ f+g, since we can define a singular 2-chain with boundary f+g−f ·g by letting σ : [v0, v1, v2] −→
X be the composition of orthogonal projection onto [v0, v2] followed by f · g : [v0, v2] −→ X.
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• f−1 ∼ −f , since f + f−1 ∼ f · f−1 ∼ 0.

Applying these properties to loops, we obtain that h is a homomorphism. Clearly [π1, π1] ⊂ kerh, since H1

is abelian. Hence h induces a homomorphism πab1 (X) −→ H1.
A map in the opposite direction is given as follows: if f is a loop representative for a class in H1, choose

any path γ from x0 to f(0). Then ψ : [f ] 7→ [γfγ−1] is well-defined when taking values in πab1 .
Furthermore, it vanishes on boundaries: check on a singular 2-simplex, and view the 2-simplex as a

homotopy. It remains to show that ψ ◦ h = h ◦ ψ = 1.

2.4 Relative homology and the excision property

It is natural to expect that the homology of a space X is related to the homology of one of its subspaces
A ⊂ X; relative homology is a systematic way of analyzing this idea. Under some conditions on the pair
(X,A), we will also investigate the relationship to the homology of X/A. This will also lead us to the
Excision property and the Mayer-Vietoris sequence.

Definition 15. Let X be a space and A ⊂ X a subspace. The relative chains Cn(X,A) are chains in X
modulo chains in A, i.e.

Cn(X,A) :=
Cn(X)
Cn(A)

.

Since the boundary map ∂ : Cn(X) −→ Cn−1(X) takes Cn(A) to Cn−1(A), it descends to a boundary map,
also called ∂ : Cn(X,A) −→ Cn−1(X,A). We therefore get a chain complex

· · · // Cn(X,A) ∂ // Cn−1(X,A) // · · ·

whose cohomology gives the relative homology groups Hn(X,A). Intuitively, relative homology is the ho-
mology of X modulo A.

It is clear that our previous functoriality results on Hn(X) (sometimes called the absolute homology of
X) carry over to the relative homology. For example:

Proposition 2.14. if two maps of pairs f, g : (X,A) −→ (Y,B) are homotopic through maps of pairs
(X,A) −→ (Y,B), then f∗ = g∗ on relative cohomology.

The first result about relative homology groups is an algebraic fact which follows directly from their
definition. Since Cn(X,A) is by definition the quotient of Cn(X) by Cn(A), let i : Cn(A) −→ Cn(X) be the
inclusion and j be the quotient map, so that we have the exact sequence

0 // Cn(A) i // Cn(X)
j // Cn(X,A) // 0

We have this exact sequence for each n, and it also commutes with the boundary operator. Hence we get an
exact sequence of chain complexes:

0 // (C•(A), ∂) i // (C•(X), ∂)
j // (C•(X,A), ∂) // 0

Just as we saw for the de Rham complex, a short exact sequence of chain complexes gives a long exact
sequence of homology groups. Since we are dealing with chain complexes, not cochain complexes, the
connecting homomorphism δ coming from the boundary map ∂ is of degree −1. In this case, we obtain

Proposition 2.15 (Exactness). Given A ⊂ X, we have the following exact sequence:

H•(A)
i∗ // H•(X)

j∗yyssssssssss

H•(X,A)
δ(−1)

eeKKKKKKKKKK
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Figure 1: Braid diagram for triple

In fact, the boundary map δ has an obvious description in this application to relative homology: if
α ∈ Cn(X,A) is a relative cycle, then δ[α] is the n− 1-homology class given by [∂α] ∈ Hn−1(A).

Example 2.16. Let x0 ∈ X and consider the pair (X,x0). Then the long exact sequence in relative homology
implies Hn(X,x0) ∼= Hn(X) for all n > 0, while for n = 0 we have

0 // H0(x0) // H0(X) // H0(X,x0) // 0 ,

showing that H0(X,x0) ∼= H̃0(X) and hence Hn(X,x0) ∼= H̃n(X) for all n.

Formal consequences of subspace inclusion for relative homology can be more complicated: for instance,
suppose we have a triple (X,A,B) where B ⊂ A ⊂ X. Then we have short exact sequences

0 // Cn(A,B) // Cn(X,B) // Cn(X,A) // 0 ,

inducing the long exact sequence in homology:

H•(A,B) // H•(X,B)

xxqqqqqqqqqq

H•(X,A)
δ(−1)

ffMMMMMMMMMM

In fact, this long exact sequence couples with the long exact sequences for each pair to form a braid diagram–
see Fig. 2.4

The main result on relative homology is the excision property, which states that the homology of X
relative to A ⊂ X remains the same after deleting a subset Z whose closure sits in the interior of A. The
property is so fundamental that it has been promoted to an axiom defining a homology theory, as we shall
see.

Theorem 2.17 (Excision). Let Z ⊂ A ⊂ X, with Z ⊂ Aint. Then the inclusion (X\Z,A\Z) ↪→ (X,A)
induces isomorphisms

Hn(X\Z,A\Z) −→ Hn(X,A) ∀n.

An equivalent formulation is that if A,B ⊂ X have interiors which cover X, the inclusion (B,A ∩B) ↪→
(X,A) induces isomorphisms Hn(B,A ∩B) −→ Hn(X,A) for all n (simply set B = X\Z or Z = X\B).

Proof of Excision. Consider X as a union of A and B with interiors covering X. Then we have natural
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inclusion maps
C•(X)

C•(A) + C•(B)

ι

OO

C•(A)

77ppppppppppp
C•(B)

ggNNNNNNNNNNN

C•(A ∩B)

77ppppppppppp

ggNNNNNNNNNNN

If the map ι were an isomorphism, then we would have C•(X)/C•(A) = C•(B)/C•(A ∩ B), giving the
result. But the problem is that ι is not an isomorphism; there are “bad” simplices which can have nonempty
intersection with A−A∩B and B−A∩B. We would like to show that we can subdivide the bad simplices
into smaller good ones via a chain map ρ : C•(X) −→ C•(A) +C•(B), in such a way that it doesn’t change
the homology. In fact, we show that C•(A) + C•(B) is a deformation retract of C•(X), in the sense that
ρ ◦ ι = Id and Id − ι ◦ ρ = ∂D + D∂ for some chain homotopy D. In fact we will choose D to preserve the
subcomplexes C•(A) and C•(B), implying that we obtain a chain homotopy equivalence

C•(X)/C•(A) −→ C•(B)/C•(A ∩B),

yielding the proof of the theorem.
The map ρ will essentially be an iteration of the barycentric subdivision map S, which we now define

(we will be a little sloppy to speed things up - see Hatcher for a full treatment).

Definition 16 (Subdivision operator). If w0, . . . wn are points in a vector space and b is any other point,
then b can be added to a simplex, forming a cone: b · [w0, · · · , wn] = [b, w0, · · · , wn]. Note that ∂b = Id− b∂,
i.e. the boundary of a cone consists of the base together with the cone on the boundary. Given any simplex
λ, let bλ be the barycenter. Then we define inductively the barycentric subdivision Sλ = bλ · S(∂λ), with
the initial step S[∅] = [∅] on the empty simplex. Note that the diameter of each simplex in the barycentric
subdivision of [v0, · · · , vn] is at most n/(n+ 1) times the diameter of [v0, · · · , vn], so that they approach zero
size as n→∞.

Now, given a singular n-simplex σ : ∆n −→ X, define Sσ = σ|S∆n , in the sense that it is a signed sum
of restrictions of σ to the n-simplices of the barycentric subdivision of ∆n. S : Cn(X) −→ Cn(X) is a chain
map, since

∂Sλ = ∂(bλ(S∂λ))
= S∂λ− bλ(∂S∂λ) since ∂bλ + bλ∂ = 1
= S∂λ− bλ(S∂∂λ) by induction
= S∂λ.

This subdivision operator is chain homotopic to the identity, via the map T : Cn(X) −→ Cn+1(X) given
as follows: Subdivide ∆n× I into simplices inductively by joining all simplices in ∆n×{0}∪ ∂∆n× I to the
barycenter of ∆n×{1}. Projecting ∆n×I −→ ∆n, we may compose with any singular simplex σ : ∆n −→ X
to obtain a sum of n+ 1-simplices. Formalizing this, we have Tλ = bλ(λ−T∂λ) and T [∅] = 0. We may then
check the formula ∂T + T∂ = Id− S:

∂Tλ = ∂(bλ(λ− T∂λ))
= λ− T∂λ− bλ(∂(λ− T∂λ)) using ∂Bλ = Id− bλ∂
= λ− T∂λ− bλ(S∂λ+ T∂∂λ) by induction
= λ− T∂λ− Sλ since Sλ = bλ(S∂λ)
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Note that T also preserves C•(A), C•(B).
For each singular n-simplex σ : ∆n −→ X, there exists a minimal m(σ) such that Sm(σ)(σ) lies in

Cn(A) + Cn(B). Note that the chain homotopy between Sm and Id is given by

Dm = T (1 + S + S2 + · · ·+ Sm−1).

We then define D : Cn(X) −→ Cn+1(X) via Dσ = Dm(σ)σ, and then we compute

∂Dσ +D∂σ = σ − [Sm(σ)σ +Dm(σ)(∂σ)−D(∂σ)],

and finally we define ρ(σ) to be the bracketed term. Claim: ρ maps C•(X) to C•(A)+C•(B). The first term
Sm(σ) clearly does, and since m(∂σ) ≤ m(σ), it follows that (Dm(σ) −D)(∂σ) consists of terms TSi(∂σ) for
i ≥ m(∂σ), which all lie in C•(A) + C•(B).

Finally, we have constructed ρ,D such that ρι = Id (since m is zero) and ∂D + D∂ = Id − ιρ, with D
preserving the subcomplex C•(A) + C•(B). As explained earlier, this proves the result.

Let A ⊂ X be a nonempty closed subspace which is a deformation retract of some neighbourhood in
X. We call such a pair (X,A) a good pair (CW pairs are automatically good pairs, see the Appendix in
Hatcher).

Corollary 2.18. If (X,A) is a good pair, then the quotient map q : (X,A) −→ (X/A,A/A) induces isomor-
phisms

q∗ : Hn(X,A) −→ Hn(X/A,A/A) ∼= H̃n(X/A) ∀n.

Proof. Let V be a neighbourhood of A in X which deformation retracts onto A and let ι : A ↪→ V be the
inclusion. Then we have the diagram

Hn(X,A)
ι∗ //

q∗

��

Hn(X,V )

q′∗
��

Hn(X/A,A/A)
ι′∗

// Hn(X/A, V/A)

The map ι∗ is an isomorphism, as follows: Hn(V,A) are zero for all n, since the deformation retraction gives
a homotopy equivalence of pairs (V,A) ' (A,A) and Hn(A,A) = 0. Then using the long exact sequence for
the triple (X,V,A) we see that ι∗ is an iso.

ι′∗ is also an iso, since the deformation retraction induces a deformation retraction of V/A onto A/A, so
by the same argument we get ι′∗ is an iso.

The groups on the right can be obtained by excision:

Hn(X,V )

q′∗
��

Hn(X\A, V \A)
j∗

oo

q′′∗
��

Hn(X/A, V/A) Hn(X/A−A/A, V/A−A/A)
j′∗oo

The maps j∗, j′∗ are iso by the excision property, and q′′∗ is an iso, since q restricted to the complement of A
is a homeo. This implies q′∗ is an iso, and hence q∗ is an iso, as required.

Corollary 2.19. If (X,A) is a good pair, then the exact sequence for relative homology may be written as

H̃•(A) // H̃•(X)

yysssssssss

H̃•(X/A)

δ(−1)

eeJJJJJJJJJ
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The above long exact sequence may be applied to the pair (Dn, ∂Dn), where Dn is the closed unit n-ball;
Note that Dn ' ∗ and hence Hk(Dn) = 0 ∀k. Also note that Dn/∂Dn ' Sn. Hence we have isomorphisms
H̃i(Sn) ∼= Hi−1(Sn−1), implying that H̃k(Sn) vanishes for k 6= n and is isomorphic to Z for k = n.

Corollary 2.20. Hk(Sn) ∼= Z for k = 0, n and Hi(Sn) = 0 otherwise.

We also get Brouwer’s theorem from this:

Corollary 2.21. ∂Dn is not a retract of Dn, and hence every map f : Dn −→ Dn has a fixed point.

Proof. Let r be such a retraction, so that ri = Id for the inclusion i : ∂Dn ↪→ Dn. Then the composition

Hn−1(∂Dn)
i∗ // Hn−1(Dn)

r∗ // Hn−1(∂Dn)

is the identity map on Hn−1(∂Dn) ∼= Z. Of course this is absurd since Hn−1(Dn) = 0.

Another easy consequence is the computation of H•(X ∧Y ): if the wedge sum is formed at points x ∈ X
and y ∈ Y such that (x,X), (y, Y ) are good pairs, then the inclusions i : X −→ X ∧ Y and j : Y −→ X ∧ Y
induce isomorphisms

H̃k(X)⊕ H̃k(Y ) −→ H̃k(X ∧ Y ).

This follows from the fact that (X t Y, {x, y}) is a good pair and H(X t Y/{x, y}) ∼= H̃(X t Y, {x, y}) =
H̃(X)⊕ H̃(Y ).

Yet another result which we may now prove easily: Brouwer’s invariance of dimension.

Corollary 2.22. If U ⊂ Rm and V ⊂ Rn are homeomorphic and nonempty, then n = m.

This result is easily obtained with the definition of local homology groups

Definition 17. Let x ∈ X. Then the local homology groups of X at x are Hn(X,X\{x}).

For any open neighbourhood U of x, excision gives isomorphisms

Hn(X,X − {x}) ∼= Hn(U,U − {x}),

hence the local homology groups only depend locally on x. For instance, a homeomorphism f : X −→ Y
must induce an isomorphism from the local homology of x to that of f(x).

For topological n-manifolds, Hk(X,X −{x}) ∼= Hk(Rn,Rn−{0}) ∼= H̃k−1(Rn−{0}) ∼= H̃k−1(Sn−1) and
hence it vanishes unless k = n, in which case it is isomorphic to Z. Note that we obtain a fiber bundle over
X with fiber above x given by Hn(X,X − {x}) and isomorphic to Z. Is this a trivial fiber bundle?
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2.5 Excision implies Simplicial = Singular homology

Recall that simplicial homology was defined in terms of a ∆-complex decomposition of X, via a collection
of maps σα : ∆n −→ X. We then define the chains to be the free abelian group on the n-simplices, i.e.
∆n(X). We would like to show that if a ∆-complex structure is chosen, then its simplicial homology coincides
with the singular homology of the space X. It will be useful to do this by induction on the k-skeleton Xk

consisting of all simplices of dimension k or less, and so we would like to use a relative version of simplicial
homology:

Define relative simplicial homology for any sub-∆-complex A ⊂ X as usual, using relative chains

∆n(X,A) =
∆n(X)
∆n(A)

,

and denote it by H∆
n (X,A).

Theorem 2.23. Any n-simplex in a ∆-complex decomposition of X may be viewed as a singular n-simplex,
hence we have a chain map

∆n(X,A) −→ Cn(X,A).

The induced homomorphism H∆
n (X,A) −→ Hn(X,A) is an isomorphism. Taking A = ∅, we obtain the

equivalence of absolute singular and simplicial homology.

Lemma 2.24. The identity map in : ∆n −→ ∆n is a cycle generating Hn(∆n, ∂∆n).

Proof. Certainly in defines a cycle, and it clearly generates for n = 0. We do an induction by relating in
to in−1 by killing Λ ⊂ ∆n, the union of all but one n− 1-dimensional face of ∆n and considering the triple
(∆n, ∂∆n,Λ). Since Hi(∆n,Λ) = 0 by deformation retraction, we get isomorphism

Hn(∆n, ∂∆n) ∼= Hn−1(∂∆n,Λ).

But (∂∆n,Λ) and (∆n−1, ∂∆n−1) are good pairs and hence the relative homologies equal the reduced ho-
mology of the quotients, which are homeomorphic. Hence we have

Hn−1(∂∆n,Λ) ∼= Hn−1(∆n−1, ∂∆n−1).

Under the first iso, in is sent to ∂in which in the relative complex is ±in−1, so we see that in generates iff
in−1 generates.

proof of theorem. First suppose that X is finite dimensional, and A = ∅. Then the map of simplicial to
singular gives a morphism of relative homology long exact sequences:

H∆
n+1(Xk, Xk−1) //

��

H∆
n (Xk−1) //

��

H∆
n (Xk)

��

// H∆
n (Xk, Xk−1)

��

// H∆
n−1(Xk−1)

��
Hn+1(Xk, Xk−1) // Hn(Xk−1) // Hn(Xk) // Hn(Xk, Xk−1) // Hn−1(Xk−1)

We will show that most of the vertical maps are isos and then deduce the center map is an iso.
First the maps on relative homology: the group ∆n(Xk, Xk−1) is free abelian on the k-simplices, and

hence it vanishes for n 6= k. Therefore the only nonvanishing homology group is H∆
k (Xk, Xk−1), which is

free abelian on the k-simplices. To compute the singular group Hn(Xk, Xk−1), consider all the simplices
together as a map

Φ : tα(∆k
α, ∂∆k

α) −→ (Xk, Xk−1)
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and note that it gives a homeomorphism of quotient spaces. Hence we have

H•(∆k
α, ∂∆k

α) // H•(Xk, Xk−1)

��
H̃•(∆k

α/∂∆k
α) H̃•(Xk/Xk−1)

which shows that the top is an iso. Using the previous lemma which tells us that the generators of
H•(∆k, ∂∆k) are the same as the simplicial generators, we get that the maps

H∆
k (Xk, Xk−1) −→ Hk(Xk, Xk−1)

are isomorphisms. The second and fifth vertical maps are isomorphisms by induction, and then by the
Five-Lemma, we get the central map is an iso.

What about if X is not finite-dimensional? Use the fact that a compact set in X may only meet finitely
many open simplices (i.e. simplices with proper faces deleted) of X (otherwise we would have an infinite
sequence (xi) such that Ui = X − ∪j 6=i{xj} give an open cover of the compact set with no finite subcover.

To prove H∆
n (X) −→ Hn(X) is surjective, let [z] ∈ Hn(X) for z a singular n-cycle. It meets only

finitely many simplices hence it must be in Xk for some k. But we showed that H∆
n (Xk) −→ Hn(Xk) is an

isomorphism, so this shows that z must be homologous in Xk to a simplicial cycle. For injectivity: if z is a
boundary of some chain, this chain must have compact image and lie in some Xk, so that [z] is in the kernel
H∆
n (Xk) −→ Hn(X). But this is an injection, so that z is a simplicial boundary in Xk (and hence in X).

All that remains is the case where A 6= ∅, which follows by applying the Five-Lemma to both long exact
sequences of relative homology, for each of the simplicial and singular homology theories.

Lemma 2.25 (Five-Lemma). If α, β, δ, ε are isos in the diagram

A
i //

α

��

B
j //

β

��

C
k //

γ

��

D
l //

δ

��

E

ε

��
A′

i′ // B′
j′ // C ′

k′ // D′
l′ // E′

and the rows are exact sequences, then γ is an iso.

Proof. γ surjective: take c′ ∈ C ′. Then k′(c′) = δ(d) = δk(c) = k′γ(c) for some c. Therefore k′(c′−γ(c)) = 0,
which implies c′ − γ(c) = j′(b′) = j′(β(b)) = γj(b) for some b, showing that c′ = γ(c+ j(b)).

γ injective: γ(c) = 0 implies c = j(b) for some b with β(b) = i′(a′) = i′α(a) = βi(a) for some a, so that
b = i(a), showing that c = 0.

The previous theorem allows us to conclude that for X a ∆-complex with finitely many n-simplices,
Hn(X) is finitely generated, and hence it is given by the direct sum of Zbn and some finite cyclic groups. bn
is called the nth Betti number, and the finite part of the homology is called the torsion.
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2.6 Axioms for homology

Eilenberg, Steenrod, and Milnor obtained a system of axioms which characterize homology theories without
bothering with simplices and singular chains. Be warned: not all “homology theories” satisfy these axioms
precisely: Čech homology fails exactness and Bordism and K-theory fail dimension (without dimension, the
homology theory is called extraordinary).

If we restrict our attention to Cell complexes (i.e. CW complexes), then singular homology is the unique
functor up to isomorphism which satisfies these axioms (we won’t have time to prove this).

Definition 18. A homology theory is a functor H from topological pairs (X,A) to graded abelian groups
H•(X,A) together with a natural transformation ∂∗ : Hp(X,A) −→ Hp−1(A) called the connecting homo-
morphism9 (note that Hp(A) := Hp(A, ∅)) such that

i) (Homotopy) f ' g ⇒ H(f) = H(g)

ii) (Exactness) For i : A ↪→ X and j : (X, ∅) ↪→ (X,A), the following is an exact sequence of groups:

H•(A)
i∗=H(i) // H•(X)

j∗=H(j)yyssssssssss

H•(X,A)
∂∗

eeKKKKKKKKKK

iii) (Excision) Given Z ⊂ A ⊂ X with Z ⊂ Aint, the inclusion k : (X − Z,A − Z) ↪→ (X,A) induces an
isomorphism

H(k) : H•(X − Z,A− Z)
∼=−→ H•(X,A).

iv) (Dimension) For the one-point space ∗, Hi(∗) = 0 for all i 6= 0.

v) (Additivity) H preserves coproducts, i.e. takes arbitrary disjoint unions to direct sums10.

Finally, the coefficient group of the theory is defined to be G = H0(∗).

Note: There are natural shift functors S, s acting on topological pairs and graded abelian groups, respec-
tively, given by S : (X,A) 7→ (A, ∅) and (s(G•))n = Gn+1. The claim that ∂∗ is natural is properly phrased
as

∂∗ : H ⇒ s−1 ◦H ◦ S.

Note:If the coefficient group G is not Z, then the theorem mentioned above for CW complexes says that
the homology functor must be isomorphic to H•(X,A;G), singular homology with coefficients in G, meaning
that chains consist of linear combinations of simplices with coefficients in G instead of Z.

There is a sense in which homology with coefficients in Z is more fundamental than homology with
coefficients in some other abelian group G. The result which explains this assertion is called the “universal
coefficient theorem for homology”. Let’s describe this briefly, because it is the first example we encounter of
a derived functor.

The chains Cn(X,A;G) with coefficients inG is naturally isomorphic to the tensor product Cn(X,A)⊗ZG,
and the boundary map is nothing but

∂ ⊗ Id : Cn(X,A)⊗G −→ Cn−1(X,A)⊗G.

So, instead of computing the homology of the chain complex Cn, we are computing the homology of Cn⊗G.
9This natural transformation ∂∗ is the only remnant of chains, boundary operators, etc. All that is gone, but we retain the

categorical notion defined by ∂∗.
10recall that coproduct of Xi is the universal object with maps from Xi, whereas the product is the universal object with

projections to Xi
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Theorem 2.26. If C is a chain complex of abelian groups, then there are natural short exact sequences

0 // Hn(C)⊗G // Hn(C;G) // Tor(Hn−1(C), G) // 0

and these sequences split but not naturally.

Here, Tor(A,G) is an abelian group (always torsion, it turns out) which depends on the abelian groups
A,G, and is known as the first derived functor of the functor A 7→ A⊗G. In particular, the following rules
will help us compute the Tor group: Tor(A,G) = 0 if A is free. Tor(A1⊕A2, G) ∼= Tor(A1, G)⊕Tor(A2, G),
and most importantly Tor(Z/nZ, G) ∼= ker(G n·−→ G). Clearly under many circumstances Tor(Hn−1(C), G)
will vanish and in this case Hn(C;G) = Hn(C)⊗G. For example, although H1(RP 2) = Z/2Z, multiplication
by 2 has trivial kernel on Z/3Z, hence Hn(RP 2,Z/3Z) = Hn(RP 2)⊗ Z/3Z. On the other hand, with Z/2Z
coefficients, Tor(Z/2Z,Z/2Z) = Z/2Z, hence H2(RP 2,Z/2Z) = Z/2Z.

If we triangulate RP 2 with two 2-simplices, we can check that the sum of the two 2-simplices can’t have
zero boundary with Z coefficients. Certainly it is zero with Z/2Z coefficients. We can interpret this to mean
that when coefficients Z/2Z are chosen, orientation ceases to be meaningful and a compact manifold then
has a cycle in top dimension, even though it may have no oriented cycle in top dimension.

2.7 Mayer-Vietoris sequence

The Mayer-Vietoris sequence is often more convenient to use than the relative homology exact sequence and
excision. As in the case for de Rham cohomology, it is particularly useful for deducing a property of a union
of sets, given the property holds for each component and each intersection.

Theorem 2.27. Let X be covered by the interiors of subsets A,B ⊂ X. Then we have a canonial long exact
sequence of homology groups

H•(A ∩B) Φ // H•(A)⊕H•(B)

Ψwwooooooooooo

H•(X)
∂−1

ffLLLLLLLLLL

Proof. The usual inclusions induce the following short exact sequence of chain complexes

0 // Cn(A ∩B)
ϕ // Cn(A)⊕ Cn(B)

ψ// Cn(A) + Cn(B) ⊂ Cn(X) // 0

where ϕ(x) = (x,−x) and ψ(x, y) = x + y. Why is it exact? kerϕ = 0 since any chain in A ∩ B which is
zero as a chain in A or B must be zero. Then ψϕ = 0, proving that imϕ ⊂ kerψ. Also, kerψ ⊂ imϕ, since if
(x, y) ∈ Cn(A)⊕Cn(B) satisfies x+ y = 0, then x = −y must be a chain in A and in B, i.e. x ∈ Cn(A∩B)
and (x, y) = (x,−x) is in imϕ. Exactness at the final step is by definition of Cn(A) + Cn(B).

The long exact sequence in homology which obtains from this short exact sequence of chain complexes
almost gives the result, except it involves the homology groups of the chain complex Cn(A) + Cn(B). We
showed in the proof of excision that the inclusion ι : C•(A) +C•(B) −→ C•(X) is a deformation retract i.e.
we found a subdivision operator ρ such that ρ ◦ ι = Id and Id− ι ◦ ρ = ∂D + D∂ for a chain homotopy D.
So ι is an isomorphism on homology, and we obtain the result.

The connecting homomorphism Hn(X) −→ Hn−1(A ∩ B) can be described as follows: take a cycle
z ∈ Zn(X), produce the homologous subdivided cycle ρ(z) = x+ y for x, y chains in A,B – these need not
be cycles but ∂x = −∂y. ∂[z] is defined to be the class [∂x].

Often we would like to use Mayer-Vietoris when the interiors of A and B don’t cover, but A and B
are deformation retracts of neighbourhoods U, V with U ∩ V deformation retracting onto A ∩ B. Then the
Five-Lemma implies that the maps Cn(A) +Cn(B) −→ Cn(U) +Cn(V ) are isomorphisms on homology and
therefore so are the maps Cn(A) + Cn(B) −→ Cn(X), giving the Mayer-Vietoris sequence.
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Figure 2: Braid diagram for A ∩B (Bredon)

Example 2.28. write Sn = A∪B with A,B the northern and southern closed hemispheres, so that A∩B =
Sn−1. Then Hk(A)⊕Hk(B) vanish for k 6= 0, and we obtain isos Hn(Sn) = Hn−1(Sn−1).

Example 2.29. Write the Klein bottle as the union of two Möbius bands A,B glued by a homeomorphism
of their boundary circles. A, B, and A ∩B are homotopy equivalent to circles, and so we obtain by Mayer-
Vietoris

0 // H2(K) // H1(A ∩B) Φ // H1(A)⊕H1(B) // H1(K) // 0

(The sequence ends in zero since the next map H0(A ∩ B) −→ H0(A) ⊕ H0(B) is injective.) The map
Φ : Z −→ Z⊕ Z is 1 7→ (2,−2) since the boundary circle wraps twice around the core circle. Φ is injective,
so H2(K) = 0 (c.f. orientable surface!) Then we obtain H1(K) ∼= Z ⊕ Z2 since we can choose Z ⊕ Z =
Z(1, 0) + Z(1,−1).

Example 2.30. Compute homology for RP 2.

The Mayer-Vietoris sequence can also be deduced from the axioms for homology (the way we did it above
used a short exact sequence of chain complexes). Let X be covered by the interiors of A,B. Then by the
exactness axiom applied to (A,A ∩ B) and (B,A ∩ B), we obtain two long exact sequences. Applying the
excision axiom to the inclusion (A,A∩B) ↪→ (A∪B,B) and similarly for (B,A∩B) ↪→ (A∪B,A), we can
modify the relative homology groups in the previous sequences to involve A ∪ B. Then observe that these
two sequences combine to form the braid diagram of 4 commuting exact sequences in Figure 2.

By a diagram chase, we then obtain the Mayer-Vietoris sequence

· · · // Hi(A ∩B)
Φ=iA∗ ⊕−i

B
∗// Hi(A)⊕Hi(B)

Ψ=jA∗ +jB∗ // Hi(A ∪B) ∂ // Hi−1(A ∩B) // · · ·

Define ∂ by either composition in the braid (they coincide). Check that it’s a complex at Hi(A ∪ B) and
that it is exact. Similar arguments prove exactness at each step.
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2.8 Degree

While we will only use the degree of a map f : Sn −→ Sn, the degree of a continuous map of orientable,
compact n-manifolds f : M −→ N is an integer defined as follows: one can show that Hn(M) = Z for any
compact orientable n-manifold and that this is generated by the “fundamental class” which we denote [M ].
This class would be represented by, for example, the sum of simplices in an oriented triangulation of M . See
Chapter 3 of Hatcher for the details.

Definition 19. Let M,N be compact, oriented n-manifolds and f : M −→ N a continuous map. Then the
map f∗ : Hn(M) −→ Hn(N) sends [M ] to d[N ], for some integer d = deg(f), which we call the degree of f .

Degree is easiest for maps f : Sn −→ Sn, where we showed Hn(Sn) = Z, so that f∗(α) = dα, and we
then put deg(f) = d. As listed in Hatcher, here are some properties of deg f for spheres:

• deg Id = 1

• if f is not surjective, then deg f = 0, since f can be written as a composition Sn −→ Sn−{x0} −→ Sn

for some point x0, and Hn(Sn − {x0}) = 0.

• If f ' g, then deg f = deg g, since f∗ = g∗. The converse statement follows from πn(Sn) = Z.

• deg fg = deg f deg g, since (fg)∗ = f∗g∗, and hence deg f = ±1 if it is a homotopy equivalence.

• a reflection of Sn has deg = −1. A simple way of seeing this is to write Sn as the union of two
n-simplices ∆1,∆2 so that [Sn] = ∆1 −∆2 and the reflection then exchanges ∆i, acting by −1.

• The antipodal map on Sn, denoted by −Id, has degree (−1)n+1, since it is the reflection in all n + 1
coordinate axes.

• If f has no fixed points, then the line segment from f(x) to −x avoids the origin, so that if we define
gt(x) = (1− t)f(x)− tx, then gt(x)/|gt(x)| is a homotopy of maps from f to the antipodal map. Hence
deg(f) = n+ 1.

The degree was historically used to study zeros of vector fields, since for example a sphere around an
isolated zero is mapped via the vector field to another sphere of the same dimension (after normalizing the
vector field). Hence the degree may be used to assign an integer to any vector field. A related result is the
theorem which says you can’t comb the hair on a ball flat.

Theorem 2.31. A nonvanishing continuous vector field may only exist on Sn if n is odd.

Proof. View the vector field as a map from Sn to itself. If the vector field is nonvanishing, we may normalize
it to unit length. Call the resulting map x 7→ v(x). Then ft(x) = cos(t)x + sin(t)v(x) for t ∈ [0, π] defines
a homotopy from Id to the antipodal map −Id. Hence by homotopy invariance of degree, (−1)n+1 = 1, as
required.

To see that odd spheres do have nonvanishing vector fields, view S2n−1 ⊂ Cn, and if ∂r is the unit radial
vector field, then i∂r is a vector field of unit length everywhere tangent to S2n−1.

Recall that when we studied differentiable maps, we defined the degree of a map f : Mn −→ Nn of
n-manifolds where M is compact and N connected; it was defined as I2(f, p) for a point p ∈ N . Note that
this is simply the cardinality mod 2 of the inverse image f−1(p), for p a regular value of f . A similar formula
may be used to compute the integer degree of a map (See Bredon for a detailed, but elementary, proof)

Let f : Sn −→ Sn be a smooth map and p ∈ Sn a regular value, so that f−1(p) = {q1, . . . , qk}. Then for
each qi, the derivative gives a map

Dqif : TqiS
n −→ TpS

n,

with determinant
det(Dqif) : ∧nTqiSn −→ ∧nTpSn.

Since Sn is orientable, we can choose an identification ∧nTSn = R, and the sign of det(Dqif) is independent
of this identification.
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Figure 3: Diagram defining cellular homology (Hatcher)

Theorem 2.32. With the above hypotheses,

deg f =
k∑
i=1

sgn det(Dqif)

2.9 Cellular homology

Cellular homology is tailor made for computing homology of cell complexes, based on simple counting of cells
and computing degrees of attaching maps. Recall that a cell complex is defined by starting with a discrete
set X0 and inductively attaching n-cells {enα} to the n-skeleton Xn−1. The weak topology says A ⊂ X is
open if it is open in each of the Xn.

The nice thing about cell complexes is that the boundary map is nicely compatible with the relative
homology sequences of the inclusions Xn ⊂ Xn+1, and that these are all good pairs.

The relative homology sequence for Xn−1 ⊂ Xn is simplified by the fact that Hk(Xn, Xn+1) vanishes
for k 6= n, and for k = n, Xn/Xn−1 is a wedge of n-spheres indexed by the n-cells. Since the pair is good,
we see

Hn(Xn, Xn−1) = free abelian group on n-cells

Then by the long exact sequence in relative homology for this pair (n fixed!), namely

Hk+1(Xn, Xn−1) // Hk(Xn−1) // Hk(Xn) // Hk(Xn, Xn−1)

we see that Hk(Xn−1) is isomorphic to Hk(Xn) for all k > n. Hence we can let n drop down to zero, and
we obtain Hk(Xn) ∼= Hk(Xn−1) ∼= · · · ∼= Hk(X0) = 0. Hence

Hk(Xn) = 0 ∀k > n.

Finally we observe using the same sequence but letting n increase, that if n > k then

Hk(Xn)
∼=−→ Hk(Xn+1) ∀n > k.

In particular, if X is finite dimensional then we see Hk(Xn) computes Hk(X) for any n > k. See Hatcher
for a proof of this fact for X infinite dimensional.

Now we combine the long exact sequences for (Xn−1, Xn−2), (Xn, Xn−1), and (Xn+1, Xn) to form the
diagram in Figure 3, where di are defined by the composition of the boundary and inclusion maps. clearly
d2 = 0. This chain complex, i.e.

CCWn (X) := Hn(Xn, Xn−1),

fashioned from the relative homologies (which are free abelian groups, recall) of the successive skeleta, is the
cellular chain complex and its homology is HCW

• (X), the cellular homology.
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Proof.

Figure 4: Diagram computing differential dn in terms of degree(Hatcher)

Theorem 2.33. HCW
n (X) ∼= Hn(X).

Proof. From the diagram, we see that Hn(X) = Hn(Xn)
im∂n+1

= imjn=ker dn
imj∂n+1=imdn+1

= HCW
n (X)

We can immediately conclude, for example, that if we have no k-cells, then Hk(X) = 0. Or, similarly, if
no two cells are adjacent in dimension, then H•(X) is free on the cells.

Example 2.34. Recall that CPn is a cell complex

CPn = e0 t e2 t · · · t e2n,

so that H•(CPn) = Z 0 Z 0 Z · · ·Z.

For more sophisticated calculations, we need an explicit description of the differential dn in the cell
complex. Essentially it just measures how many times the attaching map wraps around its target cycle.

Proposition 2.35 (Cellular differential). Let enα and en−1
β be cells in adjacent dimension, and let φα be the

attaching map Sn−1
α −→ Xn−1 for enα. Also we have the canonical collapsing π : Xn−1 −→ Xn−1/(Xn−1 −

en−1
β ) ∼= Sn−1

β . Let dαβ be the degree of the composition

∆αβ : Sn−1
α

φα−→ Xn−1 π−→ Sn−1
β .

Then
dn(enα) =

∑
β

dαβe
n−1
β .

In Figure 4, we see the lower left triangle defines dn. To determine dn(enα), take [enα] ∈ Hn(Dn
α, ∂D

n
α) on the

top left, which is sent to the basis element corresponding to enα by Φα (the characteristic inclusion map, with
associated attaching map ϕα), and we use excision/good pairs to identify its image in Hn−1(Xn−1, Xn−2)
with the image by the quotient projection q to H̃n−1(Xn−1/Xn−2). Then the further quotient map qβ :
Xn−1/Xn−2 −→ Sn−1

β collapses the complement of en−1
β to a point, so it picks out the coefficient we need,

which then by the commutativity of the diagram is the degree of ∆αβ , as required.

Example 2.36 (orientable genus g 2-manifold). If Mg is a compact orientable surface of genus g, with
usual CW complex with 1 0-cell, 2g 1-cells and 1 2-cell whose attaching map sends the boundary circle to
the concatenated path [a1, b1] · · · [ag, bg], we have the chain complex

0 // Z
d2 // Z2g

d1 //// Z // 0

where d2(e2) = 0, since for example the coefficient for a1 would be +1 − 1 = 0 sincea1 appears twice with
opposite signs in the boundary, hence we would be measuring the degree of a map which goes once around
the circle and then once in the opposite direction around the same circle - such a map is homotopic to the
constant map, and has degree 0. Hence d2 = 0. The differential d1 is also zero. Hence the chain complex is
exactly the same as the homology itself: H•(Mg) = [Z,Z2g,Z].
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Example 2.37 (nonorientable surface, genus g). Similarly, for a nonorientable surface Ng, we may choose
a cell structure with one 0-cell, g 1-cells and one 2-cells attached via a2

1 · · · a2
g Hence d2 : Z −→ Zg is given

by 1 7→ (2, · · · , 2). Hence d2 is injective and H2(Ng) = 0. Choosing (1, · · · , 1) as a basis element, we see
immediately that H1(Ng) ∼= Zg−1 ⊕ Z/2Z.

Example 2.38 (Real projective space). Recall that the cell complex structure on RPn may be viewed as
attaching Rn ∼= Dn to the RPn−1 at infinity via the attaching map Sn−1 −→ RPn−1 given by the canonical
projection (view Sn−1 ⊂ Rn, whereas RPn−1 is the lines through 0 in Rn).

The chain complex is Z in each degree from 0 to n. The differential is given by computing the degree of the
map Sn−1 −→ RPn−1 −→ RPn−1/RPn−2. This map may be factored via Sn−1 −→ Sn−1

+ ∧Sn−1
−

ν−→ Sn−1,
where Sn−1

± = Sn−1/D±, with D± the closed north/south hemisphere and ν given by the identity map on
one factor and the antipodal map on the other (which is which depends on the choice of identification of
RPn−1/RPn−2 with Sn−1. Hence ν∗ : (1, 1) 7→ 1 + (−1)n, and we have dk = 1 + (−1)k, alternating between
0, 2. It follows that

Hk(RPn) = [Z,Z2, 0,Z2, 0, · · · ,Z2, 0] for n even
Hk(RPn) = [Z,Z2, 0,Z2, 0, · · · ,Z2,Z] for n odd

Note that with Z2 coefficients we have Hk(RPn) = Z2 for all n, 0 ≤ k ≤ n.

One can show that for a compact, connected n-manifold, it is orientable if and only if its n-th homology
is Z; otherwise it vanishes. So we see from the previous computation that RP 2n−1 is orientable; this is easy
to see as follows: If A is the antipodal map x 7→ −x on R2n, and if v ∈ Ω2n(R2n) is the standard Euclidean
volume form, then A∗v = v, whereas A∗X = X for X =

∑
i x

i ∂
∂xi

, so that A∗(iXv) = iXv, showing that iXv
defines a volume form on S2n−1 invariant under the antipodal map – hence it descends to a volume form on
RP 2n−1.

Understanding the homology of projective spaces can help us understand the behaviour of maps on
spheres with respect to the antipodal map; for example, an even map f , i.e. satisfying f ◦A = f , must have
degree zero on an even sphere, since we have deg f · (−1)n+1 = deg f . It needn’t have degree zero on an odd
sphere, but it must have even degree, since f may be expressed as a composition

Sn
π−→ RPn f ′−→ Sn,

and so deg f = deg π · deg f ′ = 2 deg f ′ must be even.
We can also understand odd maps: Suppose that f ◦ A = A ◦ f . This means that f induces a map

f ′ : RPn −→ RPn. We will show that odd maps must have odd degree, a fact which implies the Borsuk-Ulam
theorem (we proved this in dimension 2, using the fact that any odd map S1 −→ S1 must be homotopically
nontrivial, which in this case would follow from having odd degree)

Theorem 2.39. An odd map f : Sn −→ Sn must have odd degree.

Proof. The proof will be to show that f∗ is an isomorphism on Hn(Sn; Z2). The proof will exploit the fact
that while the homology of Sn is empty between 0, n, the Z2 homology of RPn is Z2 in every degree k, and
we will show f induces an isomorphism on Hk(RPn) for all k.

To understand the relationship between the homology of RPn and its double cover, we use the transfer
sequence relating them (there are transfer sequences for covering spaces in general):

0 // Cn(X; Z2) τ // Cn(X̃; Z2)
p∗ // Cn(X,Z2) // 0

Here, τ sends each simplex to the sum of its two lifts to X̃, and p∗ is the map induced by the covering map.
This is a short exact sequence of chain groups, and induces a “transfer” long exact sequence (coefficients in
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Z2!)

0 // Hn(RPn)
τ∗ // Hn(Sn)

p∗=0 // Hn(RPn)
∼= // Hn−1(RPn−1) // 0 // · · ·

H1(RPn)
∼= // H0(RPn) 0 // H0(Sn)

p∗ // H0(RPn) // 0

Now we use the fact that f induces a map f̄ : RPn −→ RPn, and (f̄ , f, f̄) define a chain map of
the transfer short exact sequence to itself, and we observe by induction from dimension zero that they
induce isomorphisms on the long exact sequences in homology. In particular we obtain that the last map,
f∗ : Hn(Sn,Z2) −→ Hn(Sn,Z2), is an isomorphism.

As a final comment, we can easily show that the Euler characteristic of a finite cell complex, usually
defined as an alternating sum χ(X) =

∑
n(−1)ncn where cn is the number of n-cells, can be defined purely

homologically, and is hence independent of the CW decomposition:

Theorem 2.40.
χ(X) =

∑
n

(−1)nrank Hn(X),

where rank is the number of Z summands.

Proof. The CW homology gives us short exact sequences 0→ Zn → Cn → Bn−1 → 0 and 0→ Bn → Zn →
Hn → 0, where Cn = Hn(Xn, Xn−1), etc. For such sequences, the alternating sum of ranks is always zero.
Summing over n, we obtain the result.
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3 Cohomology

Cohomology H• is in many ways dual to homology, but not (always) literally so. Just as homology, it can
be characterized by a set of axioms, but the functor H• is contravariant instead of covariant: it reverses
arrows. One can think of cohomology as a theory of functions on chains; as is normally the case, functions
may be pulled back in a contravariant way. Functions on spaces have many additional algebraic properties,
and this is also true of cohomology: unlike homology, the cohomology forms a graded commutative ring,
under the cup product. Also it acts on the homology via the cap product, and this action is usually used to
describe Poincaré duality.

Singular cohomology is defined as the homology of the singular cochain complex, which itself is produced
by applying the dualization functor Hom(−,Z) to the singular chain complex:

X //

""E
EE

EE
EE

EE
C•(X) //

Hom(−,Z)

��

H•(X)

C•(X) // H•(X)

This will define cohomology with integral coefficients, often written H•(X; Z); for another abelian group G,
we define H•(X;G) via the dualization functor Hom(−, G) applied to C•(X).

X //

##H
HH

HH
HH

HH
H C•(X) //

Hom(−,G)

��

H•(X)

C•(X;G) // H•(X;G)

will apply a functor, not to homology, but rather start with the singular chain complex (Cn, ∂) =
(Cn(X), ∂) and form the cochain complex (Cn, δ) = (Hom(Cn,Z), δ = ∂∗):

· · · // Cn+1
∂ // Cn

∂ // Cn−1
// · · ·

· · · Cn+1oo Cn
δ
oo Cn−1

δ
oo · · ·oo

The coboundary map δ has the following nice description: for ϕ ∈ Cn(X;G), the coboundary δϕ is the
composition

Cn+1(X) ∂−→ Cn(X)
ϕ−→ G,

so that for a singular n+ 1-simplex σ : ∆n+1 −→ X,

δϕ(σ) =
∑
i

(−1)iϕ(σ|[v0,··· ,v̂i,··· ,vn+1])

One is tempted to think that the cohomology groups are also simply the duals of the homology groups -
this is wrong for a simple reason: consider the simple chain complex

0←− Z[0] m←− Z[1]←− 0,

where the brackets denote the grading. Then H0 = Zm and H1 = 0. Dualizing, we obtain

0 −→ Z[0] m−→ Z[1] −→ 0,

so that now H0 = 0, H1 = Zm. Clearly the torsion group has moved up one degree when passing to
cohomology.

Just as when applying the functor −⊗ZG, the functor Hom(−, G) is not well-behaved on exact sequences,
and it is necessary to use its “derived functor” Ext(−, G) to figure out the cohomology.

39



3.1 Cup product 1300Y Geometry and Topology

Theorem 3.1 (universal coefficients for cohomology). The cohomology groups Hn(X;G) are determined by
the split exact sequences

0 −→ Ext(Hn−1(X), G) −→ Hn(X;G) h−→ Hom(Hn(X), G) −→ 0,

where h is given by evaluation on a cycle.

Just as for the derived functor Tor(−, G), we can give simple rules which enable us to calculate Ext
in all common circumstances. First Ext(A ⊕ B,G) ∼= Ext(A,G) ⊕ Ext(B,G). Also Ext(H,G) = 0 if H is
free, and finally Ext(Zn, G) ∼= G/nG. This means, for example, that Ext(H,Z) is isomorphic to the torsion
subgroup of H, when H is finitely generated. As a a result, we have the following formalization of our earlier
observation about torsion moving up one degree:

Proposition 3.2. Assuming Hn(X) and Hn−1(X) are finitely generated, then Hn(X) ∼= (Hn(X)/Tn) ⊕
Tn−1, for Ti the torsion in Hi.

Proposition 3.3 (Field coefficients). When we take coefficients in a field F , for example Z2, Q, or R,C,
we get a lot of simplification: the chain groups Hom(Cn(X), F ) are F -modules (vector spaces!) which can be
written as HomF (Cn(X;F ), F ), and the derived functors of HomF are zero, so all the Ext groups are zero.
Hence we get that with field coefficients, Hn(X,F ) is precisely dual to Hn(X,F ).

The de Rham theorem states that de Rham cohomology Hk
dR(M) coincides with the singular cohomology

with coefficients in R. Then, the duality relation with homology may be interpreted as the integration pairing:
any k-form may be integrated on an oriented k-submanifold, and if this k-form is closed, then the resulting
number will be independent of the homology class of the k-submanifold.

Example 3.4. Compute the singular cohomology of RPn. Note that since Hk(RPn,Z2) = Z2 for 0 ≤ k ≤ n,
and since Z2 is a field, we have Hk(RPn,Z2) = Z2 as well.

3.1 Cup product

To define the cup product, we take advantage of the ring structure of Z; we could also use another ring such
as Zn or Q,R. Given chains ϕ ∈ Ck(X;R) and ψ ∈ Cl(X;R), define the cup product ϕ ∪ ψ so its value on
σ : ∆k+l −→ X is

(ϕ ∪ ψ)(σ) = ϕ(σ|[v0···vk])ψ(σ|[vk···vk+l]).

While this product is defined on cochains, it has the following compatibility with δ:

δ(ϕ ∪ ψ) = (δϕ) ∪ ψ + (−1)kϕ ∪ δψ,

i.e. δ is a graded derivation of the cup product on cochains. Hence the product descends to cohomology,
rendering H•(M ; Z) into a graded ring.

The cup product corresponds to the product on de Rham cohomology induced by wedge product of
differential forms. This correspondence is part of de Rham’s theorem, stating that the de Rham cohomology
is isomorphic to the singular cohomology, but with coefficients in R. Also, for spaces satisfying Poincaré
duality, the cup product induces a product on homology called the intersection product, which correctly
computes transverse geometric intersections, weighted by orientation (for example, if we take coefficients
in Z2, the intersection product of submanifolds of complementary dimension recovers our definition last
semester of the intersection number mod 2).

Sometimes this ring structure on H•(M,Z) can be used to distinguish spaces which may have the same
cohomology groups. For example, CP 2 and S2 ∧ S4 have the same cohomology groups [Z, 0,Z, 0,Z] but in
CP 2 the degree 2 generator squares to a degree 4 generator, whereas in S2 ∧ S4 it squares to zero.

Example 3.5. For an oriented genus g surface, we have

H•(Σg,Z) = [Z,Z2g,Z],
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with the first cohomology generated by α1, . . . , αg, β1, . . . , βg which are a dual basis to the usual choice of
basis for the first homology. Check that αi ∪αj = βi ∪ βj = 0 and αi ∪ βj = δijv, where v is the generator of
H2(Σg,Z). Notice that this defines a nondegenerate skew-symmetric inner product on H1(Σg,Z), making it
a symplectic vector space.

Example 3.6. For RP 2, if we compute the cup product on H•(RP 2,Z2), we get that the generator in degree
1 squares to the generator in degree 2. Hence we have

H•(RP 2; Z2) = Z2[x]/(x3),

where we view the polynomial ring as a graded ring with the element x having degree 1.
In fact, this is a general occurrence; one can show

H•(RPn; Z2) = Z2[x]/(xn+1),

and for the infinite projective space we have H•(RP∞; Z2) = Z2[x].
A similar calculation gives the cohomology rings for complex projective space:

H•(CPn,Z) = Z[x]/(xn+1),

but in this case, x has degree 2, and is dual to a CP 1 ⊂ CPn. Similarly, one can show H•(CP∞,Z) = Z[x].

3.2 Contravariance of cohomology

The contravariance of cohomology is often useful from the point of view of moduli theory; we can give a
brief explanation here. Any real projective space RPn has a natural line bundle on it, where the line above
a point is the line represented by the point itself. Call this line bundle U .

Given any map φ : X −→ RPn, we may pull back the bundle U , and get a line bundle φ∗U −→ X over
X. In fact, allowing arbitrarily high n, any real line bundle may be obtained this way, and homotopic maps
φ ' φ′ yield isomorphic line bundles and vice versa.

The cohomology of RP∞ is generated as a ring by the element x in the previous example. Therefore,
given any line bundle L over X, represent it by φL : X −→ RP∞, and then we may pull back x, yielding
φ∗Lx ∈ H2(X; Z2). This is a cohomology class on X which depends on the isomorphism class of L; it is
called the first Stiefel-Whitney characteristic class of L, and it actually classifies real line bundles up to
isomorphism.

Similarly, complex line bundles may be described as maps φ : X −→ CP∞, and therefore they have a
characteristic class φ∗x ∈ H2(X,Z), which is called the first Chern class of the complex line bundle; this
cohomology class completely classifies complex line bundles.

The theory of characteristic classes provides a means of characterizing some of the topology of vector
bundles in terms of cohomology of the base manifold.

3.3 Cap product

The cap product is an operation of H•(X,Z) on H•(X,Z), making the latter a right module over the
cohomology ring. It is defined, for σ : ∆k −→ X and ϕ ∈ Cl(X; Z) via

σ ∩ ϕ = ϕ(σ|[v0,··· ,vl])σ|[vl,··· ,vk].

The functoriality of this operation for maps f : X −→ Y may be written as

f∗(α) ∩ ϕ = f∗(α ∩ f∗ϕ).

Using the cap product, we can state Poincaré duality.

Theorem 3.7 (Poincaré duality). If M is a compact orientable n-manifold, then the map Hk(M ; Z) −→
Hn−k(M ; Z) given by capping against the fundamental class is an isomorphism for all k.
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Often one uses this theorem for R coefficients, in which case Hn−k = Hn−k. In this case, if we are
working on a smooth manifold, de Rham’s theorem gives Hn−k = Hn−k

dR , and then Poincaré plus de Rham
allows us to write the cap map as

Hk
dR(M) −→ Hn−k

dR (M).

This map, in the presence of a Riemannian metric, is given by the Hodge star operator on differential forms
? : Ωk(M) −→ Ωn−k(M).

These are only some of the many topics we leave for future courses.
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